111 research outputs found

    Effect of tumor burden and radical surgery on survival difference between upfront, early interval or delayed cytoreductive surgery in ovarian cancer

    Get PDF
    Procediments quirúrgics de citoreducció; Teràpia neoadjuvant; Neoplàsies d'ovariProcedimientos quirúrgicos de citorreducción; Terapia neoadyuvante; Neoplasias de ovarioCytoreduction Surgical Procedures; Neoadjuvant Therapy; Ovarian NeoplasmsObjective We sought to evaluate the impact on survival of tumor burden and surgical complexity in relation to the number of cycles of neoadjuvant chemotherapy (NACT) in patients with advanced ovarian cancer (OC) with minimal (CC-1) or no residual disease (CC-0). Methods This retrospective study included patients with International Federation of Gynaecology and Obstetrics IIIC–IV stage OC who underwent debulking surgery at 4 high-volume institutions between January 2008 and December 2015. We assessed the overall survival (OS) of primary debulking surgery (PDS group), early interval debulking surgery after 3–4 cycles of NACT (early IDS group) and delayed debulking surgery after 6 cycles (DDS group) with CC-0 or CC-1 according to peritoneal cancer index (PCI) and Aletti score. Results Five hundred forty-nine women were included: 175 (31.9%) had PDS, 224 (40.8%) early IDS and 150 (27.3%) DDS. Regardless of Aletti score, median OS after PDS was significantly higher than after early IDS or DDS, but the survival difference was higher in women with an Aletti score 10, there were no differences between PDS and early IDS, but DDS was associated with decreased OS. Conclusion The benefit of complete PDS compared with NACT was maximal in patients with a low complexity score. In patients with low tumor burden, there was a survival benefit of PDS over early IDS or DDS. In women with high tumor load, DDS impaired the oncological outcome.The project that gave rise to these results received the support of a fellowship from “la Caixa” Foundation (ID 100010434). The fellowship code is LCF/BQ/EU18/11650038

    Proteomic Studies on the Management of High-Grade Serous Ovarian Cancer Patients: A Mini-Review

    Get PDF
    Teixit cancerígen; Càncer d'ovaris; ProteòmicaTejido canceroso; Cáncer de ovarios; ProteómicaCancer tissue; Ovarian cancer; ProteomicsHigh-grade serous ovarian cancer (HGSC) remains the most common and deadly subtype of ovarian cancer. It is characterized by its late diagnosis and frequent relapse despite standardized treatment with cytoreductive surgery and platinum-based chemotherapy. The past decade has seen significant advances in the clinical management and molecular understanding of HGSC following the publication of the Cancer Genome Atlas (TCGA) researchers and the introduction of targeted therapies with anti-angiogenic drugs and poly(ADP-ribose) polymerase inhibitors in specific subgroups of patients. We provide a comprehensive review of HGSC, focusing on the most important molecular advances aimed at providing a better understanding of the disease and its response to treatment. We emphasize the role that proteomic technologies are now playing in these two aspects of the disease, through the identification of proteins and their post-translational modifications in ovarian cancer tumors. Finally, we highlight how the integration of proteomics with genomics, exemplified by the work performed by the Clinical Proteomic Tumor Analysis Consortium (CPTAC), can guide the development of new biomarkers and therapeutic targets.This work was supported by the PhD4MD collaborative research program between the Vall d’Hebron Research Institute (VHIR) and the Centre for Genomic Regulation (CRG). The CRG/UPF Proteomics Unit is part of the Spanish Infrastructure for Omics Technologies (ICTS OmicsTech) and it is a member of the ProteoRed PRB3 consortium which is supported by grant PT17/0019 of the PE I + D + i 2013–2016 from the Instituto de Salud Carlos III (ISCIII) and ERDF. We acknowledge support from the Spanish Ministry of Science and Innovation (CTQ2016-80364-P) and “Centro de Excelencia Severo Ochoa 2013–2017”, SEV-2012-0208; the “Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement de la Generalitat de Catalunya” (2017SGR595 and 2017SGR1661), from the Instituto de Salud Carlos III (PI15/02238, PI18/01017, CPII18/00027) and from the Ministerio de Economia y Competitividad y Fondos FEDER (RTC-2015-3821). We also acknowledge the support of the Spanish Ministry of Science and Innovation to the EMBL partnership, the Centro de Excelencia Severo Ochoa and the CERCA Programme/Generalitat de Catalunya

    Worsening water quality conditions at Inner Puno Bay, Lake Titicaca, Peru, and their effect on Lemna spp. biomass

    Get PDF
    Although there have been a number of studies on aquatic conditions and the flora and fauna of Lake Titicaca over many decades (Gilson 1939, 1964; Uéno 1967; Richerson et al. 1975), most of this work has been centred on the offshore regions of the main lake. More recently studies have begun to focus on near-shore waters, especially of Inner Puno Bay (Luna 1981; Northcote et al. 1989 (Spanish version 1991)). Here there has been a deterioration in water quality conditions, especially near areas close to a levee built very recently for tourist viewing, called ‘Bahia de los Incas’ (Figs. 1, 2, 3). Water quality there has been degrading and abundant growth of Lemna spp. has been developing (Cruz 2005). To some extent this Lemna growth can take up nutrients (Quispe 1999) and heavy metals (Choque 2000), but these would be released, in part, with annual die-down

    Amino modified metal-organic frameworks as pH-responsive nanoplatforms for safe delivery of camptothecin

    Full text link
    [EN] MIL-100(Fe) and MIL-101(Fe) metal-organic frameworks (MOFs) are excellent vehicles for drug delivery systems (DDSs) due to their high biocompatibility and stability in physiological fluids, as well as their pore diameter in the mesoporous range. Although they are appropriate for the internal diffusion of 20-(S)-camptothecin (CPT), a strongly cytotoxic molecule with excellent antitumor activity, no stable delivery system has been proposed so far for this drug based in MOFs. We here present novel DDSs based in amine functionalized MIL-100(Fe) and MIL-101(Fe) nanoMOFs with covalently bonded CPT. These CPT nanoplatforms are able to incorporate almost 20% of this molecule and show high stability at physiological pH, with no non-specific release. Based on their surface charge, some of these CPT loaded nanoMOFs present improved cell internalization in in vitro experiments. Moreover, a strong response to acid pH is observed, with up to four fold drug discharge at pH 5, which boost intracellular release by endosomolytic activity. These novel DDSs will help to achieve safe delivery of the very cytotoxic CPT, allowing to reduce the therapeutic dose and minimizing drug secondary effects. (C) 2019 Elsevier Inc. All rights reserved.Financial support of the Spanish Ministry of Economy and Competitiveness (projects TEC2016-80976-R and SEV-2016-0683) is gratefully acknowledged. A.C.G. thanks the La Caixa Foundation for a Ph.D. scholarship. We fully appreciate the assistance of the Electron Microscopy Service of the Universitat Politecnica de Valencia.Cabrera-GarcĂ­a, A.; Checa-Chavarria, E.; Rivero-Buceta, EM.; Moreno Manzano, V.; Fernandez Jover, E.; Botella Asuncion, P. (2019). Amino modified metal-organic frameworks as pH-responsive nanoplatforms for safe delivery of camptothecin. Journal of Colloid and Interface Science. 541:163-174. https://doi.org/10.1016/j.jcis.2019.01.042S16317454

    PSMA-Targeted Mesoporous Silica Nanoparticles for Selective Intracellular Delivery of Docetaxel in Prostate Cancer Cells

    Full text link
    [EN] Although docetaxel is currently broadly used in prostate cancer treatment, poor water solubility and systemic toxicity limit the dose and duration of therapy. In this context, although different nanoplatforms have been proposed to overcome these issues, selective therapy needs developing methodologies to target malignant cells and minimizing the impact on healthy tissue. We here present a novel drug delivery system obtained by covalent conjugation of docetaxel and an anti-prostate specific membrane antigen (PSMA) molecule (anti-FOLH1 monoclonal antibody, clone C803N) over mesoporous silica nanoparticles. This conjugate remains stable in physiological medium and shows high selectivity for LNCaP, a specific cell line that overexpresses PSMA. As a consequence, cell internalization is increased by 25%. Furthermore, cytotoxic activity of the targeted system increases by 2-fold with regard to nontargeted nanoparticles and by 2 orders with regard to the naked drug. Conversely, no targeting effect is observed over PC3, a nonbearing PSMA cell line. We expect that this therapeutic system shows strong potential for treating nonmetastatic prostate cancer, mostly through intraprostatic administration.Financial support from the Spanish Ministry of Economy and Competitiveness (projects MAT2015-66666-C3-2-R, TEC2016-80976-R, and SEV-2016-0683) and the Generalitat Valenciana (project PROMETEO/2017/060) is gratefully acknowledged. We appreciate the assistance of the Electron Microscopy Service of the Universitat Politecnica de Valencia.Rivero-Buceta, EM.; Vidaurre Agut, CM.; Vera Donoso, CD.; Benlloch Baviera, JM.; Moreno Manzano, V.; Botella Asuncion, P. (2019). PSMA-Targeted Mesoporous Silica Nanoparticles for Selective Intracellular Delivery of Docetaxel in Prostate Cancer Cells. ACS Omega. 4(1):1281-1291. https://doi.org/10.1021/acsomega.8b02909S128112914

    A combination of molecular and clinical parameters provides a new strategy for high-grade serous ovarian cancer patient management

    Get PDF
    Biomarker; Prediction; ProteomicsBiomarcador; Predicción; ProteómicaBiomarcador; Predicció; ProteòmicaBackground High-grade serous carcinoma (HGSC) is the most common and deadly subtype of ovarian cancer. Although most patients will initially respond to first-line treatment with a combination of surgery and platinum-based chemotherapy, up to a quarter will be resistant to treatment. We aimed to identify a new strategy to improve HGSC patient management at the time of cancer diagnosis (HGSC-1LTR). Methods A total of 109 ready-available formalin-fixed paraffin-embedded HGSC tissues obtained at the time of HGSC diagnosis were selected for proteomic analysis. Clinical data, treatment approach and outcomes were collected for all patients. An initial discovery cohort (n = 21) were divided into chemoresistant and chemosensitive groups and evaluated using discovery mass-spectrometry (MS)-based proteomics. Proteins showing differential abundance between groups were verified in a verification cohort (n = 88) using targeted MS-based proteomics. A logistic regression model was used to select those proteins able to correctly classify patients into chemoresistant and chemosensitive. The classification performance of the protein and clinical data combinations were assessed through the generation of receiver operating characteristic (ROC) curves. Results Using the HGSC-1LTR strategy we have identified a molecular signature (TKT, LAMC1 and FUCO) that combined with ready available clinical data (patients’ age, menopausal status, serum CA125 levels, and treatment approach) is able to predict patient response to first-line treatment with an AUC: 0.82 (95% CI 0.72–0.92). Conclusions We have established a new strategy that combines molecular and clinical parameters to predict the response to first-line treatment in HGSC patients (HGSC-1LTR). This strategy can allow the identification of chemoresistance at the time of diagnosis providing the optimization of therapeutic decision making and the evaluation of alternative treatment strategies. Thus, advancing towards the improvement of patient outcome and the individualization of HGSC patients’ care.This work was supported by the PhD4MD collaborative research program between the Vall d’Hebron Research Institute (VHIR) and the Centre for Genomic Regulation (CRG). It has been supported by grants from the Instituto Carlos III (PI18/01017), the Miguel Servet Program (CPII18/00027) and the Ministerio de Economía y Competitividad y Fondos FEDER (RTC-2015-3821-1 to AS and CTQ2016-80364-P to ES). This project has also received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 823839 (EPIC-XS).The CRG/UPF Proteomics Unit is part of the Spanish Infrastructure for Omics Technologies (ICTS OmicsTech) and it is supported by “Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement de la Generalitat de Catalunya” (2017SGR595 and 2017SGR1661). We also acknowledge support of the Spanish Ministry of Science and Innovation to the EMBL partnership, the Centro de Excelencia Severo Ochoa and the CERCA Programme / Generalitat de Catalunya

    BRCA1 mutations in high-grade serous ovarian cancer are associated with proteomic changes in DNA repair, splicing, transcription regulation and signaling

    Get PDF
    Ovarian cancer; ProteomicsCáncer de ovarios: ProteómicaCàncer d'ovaris; ProteòmicaDespite recent advances in the management of BRCA1 mutated high-grade serous ovarian cancer (HGSC), the physiology of these tumors remains poorly understood. Here we provide a comprehensive molecular understanding of the signaling processes that drive HGSC pathogenesis with the addition of valuable ubiquitination profiling, and their dependency on BRCA1 mutation-state directly in patient-derived tissues. Using a multilayered proteomic approach, we show the tight coordination between the ubiquitination and phosphorylation regulatory layers and their role in key cellular processes related to BRCA1-dependent HGSC pathogenesis. In addition, we identify key bridging proteins, kinase activity, and post-translational modifications responsible for molding distinct cancer phenotypes, thus providing new opportunities for therapeutic intervention, and ultimately advance towards a more personalized patient care.This work was supported by the PhD4MD collaborative research program between the Vall d’Hebron Research Institute (VHIR) and the Centre for Genomic Regulation (CRG). The CRG/UPF Proteomics Unit is part of the Spanish Infrastructure for Omics Technologies (ICTS OmicsTech) and it is a member of the ProteoRed PRB3 consortium which is supported by grant PT17/0019 of the PE I+D+i 2013-2016 from the Instituto de Salud Carlos III (ISCIII) and ERDF. We acknowledge support from the Spanish Ministry of Science, Innovation and Universities, (CTQ2016-80364-P and “Centro de Excelencia Severo Ochoa 2013-2017”, SEV-2012-0208), and “Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement de la Generalitat de Catalunya” (2017SGR595 and 2017SGR1661). This project has also received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 823839 (EPIC-XS). It has also been supported by grants from the Instituto Carlos III (PI15/00238, PI18/01017, PI21/00977), the Miguel Servet Program (CP13/00158 and CPII18/00027) and the Ministerio de Economía y Competitividad y Fondos FEDER (RTC-2015-3821-1). The authors are grateful to the team members of the Proteomics Unit at the Centre for Genomic Regulation, the Biomedical Research Group in Gynecology at the Vall d’Hebron Institute, the Gynecological Oncology Unit at the Vall d’Hebron Hospital and the Biomedical Research Group in Urology at the Vall d’Hebron Institute for their assistance

    The STEM-ECR Dataset: Grounding Scientific Entity References in STEM Scholarly Content to Authoritative Encyclopedic and Lexicographic Sources

    Get PDF
    We introduce the STEM (Science, Technology, Engineering, and Medicine) Dataset for Scientific Entity Extraction, Classification, and Resolution, version 1.0 (STEM-ECR v1.0). The STEM-ECR v1.0 dataset has been developed to provide a benchmark for the evaluation of scientific entity extraction, classification, and resolution tasks in a domain-independent fashion. It comprises abstracts in 10 STEM disciplines that were found to be the most prolific ones on a major publishing platform. We describe the creation of such a multidisciplinary corpus and highlight the obtained findings in terms of the following features: 1) a generic conceptual formalism for scientific entities in a multidisciplinary scientific context; 2) the feasibility of the domain-independent human annotation of scientific entities under such a generic formalism; 3) a performance benchmark obtainable for automatic extraction of multidisciplinary scientific entities using BERT-based neural models; 4) a delineated 3-step entity resolution procedure for human annotation of the scientific entities via encyclopedic entity linking and lexicographic word sense disambiguation; and 5) human evaluations of Babelfy returned encyclopedic links and lexicographic senses for our entities. Our findings cumulatively indicate that human annotation and automatic learning of multidisciplinary scientific concepts as well as their semantic disambiguation in a wide-ranging setting as STEM is reasonable

    Effectiveness and tolerability of dolutegravir/lamivudine for the treatment of HIV-1 infection in clinical practice

    Get PDF
    Objectives: To assess the effectiveness and tolerability of dolutegravir (DTG)/lamivudine (3TC) among treatment-naive and virologically suppressed treatment-experienced individuals in the multicentre cohort of the Spanish HIV/AIDS Research Network (CoRIS) during the years 2018-2021. Methods: We used multivariable regression models to compare viral suppression (VS) [HIV RNA viral load (VL) <50 copies/mL] and the change in CD4 cell counts at 24 and 48 (±12) weeks after initiation with dolutegravir/lamivudine or other first-line ART regimens. Results: We included 2160 treatment-naive subjects, among whom 401 (18.6%) started with dolutegravir/lamivudine. The remaining subjects started bictegravir (BIC)/emtricitabine (FTC)/tenofovir alafenamide (TAF) (n = 949, 43.9%), DTG + FTC/tenofovir disoproxil fumarate (TDF) (n = 282, 13.1%), DTG/3TC/abacavir (ABC) (n = 255, 11.8%), darunavir (DRV)/cobicistat(COBI)/FTC/TAF (n = 147, 6.8%) and elvitegravir (EVG)/COBI/FTC/TAF (n = 126, 5.8%). At 24 and 48 weeks after starting dolutegravir/lamivudine, 91.4% and 93.8% of the subjects, respectively, achieved VS. The probability of achieving VS with dolutegravir/lamivudine was not significantly different compared with any other regimen at 24 or 48 weeks, with the exception of a lower chance of achieving VS at 24 weeks for DRV/COBI/FTC/TAF (adjusted OR: 0.47; 95% CI: 0.30-0.74) compared with dolutegravir/lamivudine.For the analysis of treatment-experienced virally suppressed subjects we included 1456 individuals who switched to dolutegravir/lamivudine, among whom 97.4% and 95.5% maintained VS at 24 and 48 weeks, respectively. During the first 48 weeks after dolutegravir/lamivudine initiation, 1.0% of treatment-naive and 1.5% of treatment-experienced subjects discontinued dolutegravir/lamivudine due to an adverse event. Conclusions: In this large multicentre cohort, effectiveness and tolerability of dolutegravir/lamivudine were high among treatment-naive and treatment-experienced subjects.This work was supported by (i) the Instituto de Salud Carlos III through the Red Temática de Investigación Cooperativa en Sida (RD06/006, RD12/0017/0018 and RD16/0002/0006) as part of the Plan Nacional I + D + i and co-financed by Instituto de Salud Carlos III-Subdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (FEDER), and (ii) ViiV Healthcare. The funders did not play any decision making role in the design, execution, analysis or reporting of the research.S

    Significant increase in azithromycin "resistance" and susceptibility to ceftriaxone and cefixime in Neisseria gonorrhoeae isolates in 26 European countries, 2019

    Get PDF
    Background: The European Gonococcal Antimicrobial Surveillance Programme (Euro-GASP) performs annual sentinel surveillance of Neisseria gonorrhoeae susceptibility to therapeutically relevant antimicrobials across the European Union/European Economic Area (EU/EEA). We present the Euro-GASP results from 2019 (26 countries), linked to patient epidemiological data, and compared with data from previous years. Methods: Agar dilution and minimum inhibitory concentration (MIC) gradient strip methodologies were used to determine the antimicrobial susceptibility (using EUCAST clinical breakpoints, where available) of 3239 N. gonorrhoeae isolates from 26 countries across the EU/EEA. Significance of differences compared with Euro-GASP results in previous years was analysed using Z-test and the Pearson's χ2 test was used to assess significance of odds ratios for associations between patient epidemiological data and antimicrobial resistance. Results: European N. gonorrhoeae isolates collected between 2016 and 2019 displayed shifting MIC distributions for; ceftriaxone, with highly susceptible isolates increasing over time and occasional resistant isolates each year; cefixime, with highly-susceptible isolates becoming increasingly common; azithromycin, with a shift away from lower MICs towards higher MICs above the EUCAST epidemiological cut-off (ECOFF); and ciprofloxacin which is displaying a similar shift in MICs as observed for azithromycin. In 2019, two isolates displayed ceftriaxone resistance, but both isolates had MICs below the azithromycin ECOFF. Cefixime resistance (0.8%) was associated with patient sex, with resistance higher in females compared with male heterosexuals and men-who-have-sex-with-men (MSM). The number of countries reporting isolates with azithromycin MICs above the ECOFF increased from 76.9% (20/26) in 2016 to 92.3% (24/26) in 2019. Isolates with azithromycin MICs above the ECOFF (9.0%) were associated with pharyngeal infection sites. Following multivariable analysis, ciprofloxacin resistance remained associated with isolates from MSM and heterosexual males compared with females, the absence of a concurrent chlamydial infection, pharyngeal infection sites and patients ≥ 25 years of age. Conclusions: Resistance to ceftriaxone and cefixime remained uncommon in EU/EEA countries in 2019 with a significant decrease in cefixime resistance observed between 2016 and 2019. The significant increase in azithromycin "resistance" (azithromycin MICs above the ECOFF) threatens the effectiveness of the dual therapy (ceftriaxone + azithromycin), i.e., for ceftriaxone-resistant cases, currently recommended in many countries internationally and requires close monitoring.The study was funded by the European Centre for Disease Prevention and Control (Framework Contract No. ECDC/2017/004). The funding body designed, initiated and coordinated the study as well as assisted in the interpretation of the data, development and final approval of the manuscriptS
    • …
    corecore