4,596 research outputs found

    Strong Decays of Strange Quarkonia

    Get PDF
    In this paper we evaluate strong decay amplitudes and partial widths of strange mesons (strangeonia and kaonia) in the 3P0 decay model. We give numerical results for all energetically allowed open-flavor two-body decay modes of all nsbar and ssbar strange mesons in the 1S, 2S, 3S, 1P, 2P, 1D and 1F multiplets, comprising strong decays of a total of 43 resonances into 525 two-body modes, with 891 numerically evaluated amplitudes. This set of resonances includes all strange qqbar states with allowed strong decays expected in the quark model up to ca. 2.2 GeV. We use standard nonrelativistic quark model SHO wavefunctions to evaluate these amplitudes, and quote numerical results for all amplitudes present in each decay mode. We also discuss the status of the associated experimental candidates, and note which states and decay modes would be especially interesting for future experimental study at hadronic, e+e- and photoproduction facilities. These results should also be useful in distinguishing conventional quark model mesons from exotica such as glueballs and hybrids through their strong decays.Comment: 69 pages, 5 figures, 39 table

    Gaussian tree constraints applied to acoustic linguistic functional data

    Get PDF
    Evolutionary models of languages are usually considered to take the form of trees. With the development of so-called tree constraints the plausibility of the tree model assumptions can be assessed by checking whether the moments of observed variables lie within regions consistent with Gaussian latent tree models. In our linguistic application, the data set comprises acoustic samples (audio recordings) from speakers of five Romance languages or dialects. The aim is to assess these functional data for compatibility with a hereditary tree model at the language level. A novel combination of canonical function analysis (CFA) with a separable covariance structure produces a representative basis for the data. The separable-CFA basis is formed of components which emphasize language differences whilst maintaining the integrity of the observational language-groupings. A previously unexploited Gaussian tree constraint is then applied to component-by-component projections of the data to investigate adherence to an evolutionary tree. The results highlight some aspects of Romance language speech that appear compatible with an evolutionary tree model but indicates that it would be inappropriate to model all features as such

    New Glueball-Meson Mass Relations

    Get PDF
    Using the ``glueball dominance'' picture of the mixing between q\bar{q} mesons of different hidden flavors, we establish new glueball-meson mass relations which serve as a basis for glueball spectral systematics. For the tensor glueball mass 2.3\pm 0.1 GeV used as an input parameter, these relations predict the following glueball masses: M(0^{++})\simeq 1.65\pm 0.05 GeV, M(1^{--})\simeq 3.2\pm 0.2 GeV, M(2^{-+})\simeq 2.95\pm 0.15 GeV, M(3^{--})\simeq 2.8\pm 0.15 GeV. We briefly discuss the failure of such relations for the pseudoscalar sector. Our results are consistent with (quasi)-linear Regge trajectories for glueballs with slope \simeq 0.3\pm 0.1 GeV^{-2}.Comment: Extensive revision including response to comments received, value of glueball Regge slope, and a consideration of radial excitations. 14 pages, LaTe

    Small optic suspensions for Advanced LIGO input optics and other precision optical experiments

    Get PDF
    We report on the design and performance of small optic suspensions developed to suppress seismic motion of out-of-cavity optics in the Input Optics subsystem of the Advanced LIGO interferometric gravitational wave detector. These compact single stage suspensions provide isolation in all six degrees of freedom of the optic, local sensing and actuation in three of them, and passive damping for the other three

    Resonant Two-body D Decays

    Get PDF
    The contribution of a K(1430)K^*(1430) 0+0^+ resonance to D0Kπ+D^0\to K^-\pi^+ is calculated by applying the soft pion theorem to D+Kπ+D^+ \to K^* \pi^+, and is found to be about 30% of the measured amplitude and to be larger than the ΔI=3/2\Delta I=3/2 component of this amplitude. We estimate a 70% contribution to the total amplitude from a higher K(1950)K^*(1950) resonance. This implies large deviations from factorization in D decay amplitudes, a lifetime difference between D^0 and D^+, and an enhancement of D0Dˉ0D^0-\bar D^0 mixing due to SU(3) breaking.Comment: To be published in Physical Review Letters, some corrections, references update

    Detecting very-high-frequency relic gravitational waves by electromagnetic wave polarizations in a waveguide

    Full text link
    The polarization vector (PV) of an electromagnetic wave (EW) will experience a rotation in a region of spacetime perturbed by gravitational waves (GWs). Based on this idea, Cruise's group has built an annular waveguide to detect GWs. We give detailed calculations of the rotations of the polarization vector of an EW caused by incident GWs from various directions and in various polarization states, and then analyze the accumulative effects on the polarization vector when the EW passes n cycles along the annular waveguide. We reexamine the feasibility and limitation of this method to detect GWs of high frequency around 100 MHz, in particular, the relic gravitational waves (RGWs). By comparing the spectrum of RGWs in the accelerating universe with the detector sensitivity of the current waveguide, it is found that the amplitude of the RGWs is too low to be detected by the waveguide detectors currently running. Possible ways of improvements on detection are discussed also.Comment: 18pages, 10 figures, accepted by ChJA

    Monotonicity of Fitness Landscapes and Mutation Rate Control

    Get PDF
    A common view in evolutionary biology is that mutation rates are minimised. However, studies in combinatorial optimisation and search have shown a clear advantage of using variable mutation rates as a control parameter to optimise the performance of evolutionary algorithms. Much biological theory in this area is based on Ronald Fisher's work, who used Euclidean geometry to study the relation between mutation size and expected fitness of the offspring in infinite phenotypic spaces. Here we reconsider this theory based on the alternative geometry of discrete and finite spaces of DNA sequences. First, we consider the geometric case of fitness being isomorphic to distance from an optimum, and show how problems of optimal mutation rate control can be solved exactly or approximately depending on additional constraints of the problem. Then we consider the general case of fitness communicating only partial information about the distance. We define weak monotonicity of fitness landscapes and prove that this property holds in all landscapes that are continuous and open at the optimum. This theoretical result motivates our hypothesis that optimal mutation rate functions in such landscapes will increase when fitness decreases in some neighbourhood of an optimum, resembling the control functions derived in the geometric case. We test this hypothesis experimentally by analysing approximately optimal mutation rate control functions in 115 complete landscapes of binding scores between DNA sequences and transcription factors. Our findings support the hypothesis and find that the increase of mutation rate is more rapid in landscapes that are less monotonic (more rugged). We discuss the relevance of these findings to living organisms

    Final State Interactions in Hadronic D decays

    Full text link
    We show that the large corrections due to final state interactions (FSI) in the D^+\to \pi^-\pi^+\pi^+, D^+_s\to \pi^-\pi^+\pi^+, and D^+\to K^-\pi^+\pi^+ decays can be accounted for by invoking scattering amplitudes in agreement with those derived from phase shifts studies. In this way, broad/overlapping resonances in S-waves are properly treated and the phase motions of the transition amplitudes are driven by the corresponding scattering matrix elements determined in many other experiments. This is an important step forward in resolving the puzzle of the FSI in these decays. We also discuss why the \sigma and \kappa resonances, hardly visible in scattering experiments, are much more prominent and clearly visible in these decays without destroying the agreement with the experimental \pi\pi and K\pi low energy S-wave phase shifts.Comment: 22 pages, 6 figures, 5 tables. Minor changes. We extend the discusion when quoting a reference and we include a new one. Some typos are fixe
    corecore