31 research outputs found

    Fetal alcohol spectrum disorder: development of concensus referral criteria for specialist diagnostic assessment in Australia

    Get PDF
    Background: Fetal alcohol spectrum disorder (FASD) is known to be under-recognised in Australia. The use of standard methods to identify when to refer individuals who may have FASD for specialist assessment could help improve the identification of this disorder. The purpose of this study was to develop referral criteria for use in Australia. Method: An online survey about FASD screening and diagnosis in Australia, which included 23 statements describing criteria for referral for fetal alcohol syndrome (FAS) and FASD based on published recommendations for referral in North America, was sent to 139 health professionals who had expertise or involvement in FASD screening or diagnosis. Survey findings and published criteria for referral were subsequently reviewed by a panel of 14 investigators at a consensus development workshop where criteria for referral were developed.Results: Among the 139 health professionals who were sent the survey, 103 (74%) responded, and 90 (65%) responded to the statements on criteria for referral. Over 80% of respondents agreed that referral for specialist evaluation should occur when there is evidence of significant prenatal alcohol exposure, defined as 7 or more standard drinks per week and at least 3 standard drinks on any one day, and more than 70% agreed with 13 of the16 statements that described criteria for referral other than prenatal alcohol exposure. Workshop participants recommended five independent criteria for referral: confirmed significant prenatal alcohol exposure; microcephaly and confirmed prenatal alcohol exposure; 2 or more significant central nervous system (CNS) abnormalities and confirmed prenatal alcohol exposure; 3 characteristic FAS facial anomalies; and 1 characteristic FAS facial anomaly, growth deficit and 1 or more CNS abnormalities .Conclusion: Referral criteria recommended for use in Australia are similar to those recommended in North America. There is a need to develop resources to raise awareness of these criteria among health professionals and evaluate their feasibility, acceptability and capacity to improve the identification of FASD in Australia

    Collecting wild Miscanthus germplasm in Asia for crop improvement and conservation in Europe whilst adhering to the guidelines of the United Nations’ Convention on Biological Diversity

    Get PDF
    We would like to thank Dr Helen Ougham and Professor Howard Thomas for their valuable comments on this manuscript; Sarah Hawkins at IBERS for the leading of harvesting and phenotyping works; and Paul Barber at Plant Health and Seeds Inspectorate, Wales & West Midlands, Animal and Plant Health Agency (APHA) for advice on germplasm collection practice and quarantine management. This research was supported by the UK’s Department for Environment, Food and Rural Affairs (Defra) under a project entitled ‘Accession of CBD compliant Miscanthus and Triarrhena germplasm from China, Japan and Taiwan for incorporation in the UK Miscanthus breeding programme’ [grant no. NF0436]. The breeding and evaluation were conducted under ‘Genetic improvement of Miscanthus as a sustainable feedstock for bioenergy in the UK (GIANT)’ [supported by Defra and the Biotechnology and Biological Sciences Research Council (BBSRC http://dx.doi.org/10.13039/501100000690, ‘Research Councils UK’), UK, grant no. LK0863]. LH, ID and JCB were supported by BBSRC grant nos BBS/E/G/00003134 and BBS/E/W/0012843A.Peer reviewedPublisher PD

    A modified Delphi study of screening for fetal alcohol spectrum disorders in Australia

    Get PDF
    Background: There is little reliable information on the prevalence of fetal alcohol spectrum disorders (FASD) in Australia and no coordinated national approach to facilitate case detection. The aim of this study was to identify health professionals’ perceptions about screening for FASD in Australia. Method: A modified Delphi process was used to assess perceptions of the need for, and the process of, screening for FASD in Australia. We recruited a panel of 130 Australian health professionals with experience or expertise in FASD screening or diagnosis. A systematic review of the literature was used to develop Likert statements on screening coverage, components and assessment methods which were administered using an online survey over two survey rounds. Results: Of the panel members surveyed, 95 (73%) responded to the questions on screening in the first survey round and, of these, 81 (85%) responded to the second round. Following two rounds there was consensus agreement on the need for targeted screening at birth (76%) and in childhood (84%). Participants did not reach consensus agreement on the need for universal screening at birth (55%) or in childhood (40%). Support for targeted screening was linked to perceived constraints on service provision and the need to examine the performance, costs and benefits of screening. For targeted screening of high risk groups, we found highest agreement for siblings of known cases of FASD (96%) and children of mothers attending alcohol treatment services (93%). Participants agreed that screening for FASD primarily requires assessment of prenatal alcohol exposure at birth (86%) and in childhood (88%), and that a checklist is needed to identify the components of screening and criteria for referral at birth (84%) and in childhood (90%). Conclusions: There is an agreed need for targeted but not universal screening for FASD in Australia, and sufficient consensus among health professionals to warrant development and evaluation of standardised methods for targeted screening and referral in the Australian context. Participants emphasised the need for locally-appropriate, evidence-based approaches to facilitate case detection, and the importance of ensuring that screening and referral programs are supported by adequate diagnostic and management capacity

    Breeding progress and preparedness for mass‐scale deployment of perennial lignocellulosic biomass crops switchgrass, miscanthus, willow and poplar

    Get PDF
    UK: The UK‐led miscanthus research and breeding was mainly supported by the Biotechnology and Biological Sciences Research Council (BBSRC), Department for Environment, Food and Rural Affairs (Defra), the BBSRC CSP strategic funding grant BB/CSP1730/1, Innovate UK/BBSRC “MUST” BB/N016149/1, CERES Inc. and Terravesta Ltd. through the GIANT‐LINK project (LK0863). Genomic selection and genomewide association study activities were supported by BBSRC grant BB/K01711X/1, the BBSRC strategic programme grant on Energy Grasses & Bio‐refining BBS/E/W/10963A01. The UK‐led willow R&D work reported here was supported by BBSRC (BBS/E/C/00005199, BBS/E/C/00005201, BB/G016216/1, BB/E006833/1, BB/G00580X/1 and BBS/E/C/000I0410), Defra (NF0424) and the Department of Trade and Industry (DTI) (B/W6/00599/00/00). IT: The Brain Gain Program (Rientro dei cervelli) of the Italian Ministry of Education, University, and Research supports Antoine Harfouche. US: Contributions by Gerald Tuskan to this manuscript were supported by the Center for Bioenergy Innovation, a US Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science, under contract number DE‐AC05‐00OR22725. Willow breeding efforts at Cornell University have been supported by grants from the US Department of Agriculture National Institute of Food and Agriculture. Contributions by the University of Illinois were supported primarily by the DOE Office of Science; Office of Biological and Environmental Research (BER); grant nos. DE‐SC0006634, DE‐SC0012379 and DE‐SC0018420 (Center for Advanced Bioenergy and Bioproducts Innovation); and the Energy Biosciences Institute. EU: We would like to further acknowledge contributions from the EU projects “OPTIMISC” FP7‐289159 on miscanthus and “WATBIO” FP7‐311929 on poplar and miscanthus as well as “GRACE” H2020‐EU.3.2.6. Bio‐based Industries Joint Technology Initiative (BBI‐JTI) Project ID 745012 on miscanthus.Peer reviewedPostprintPublisher PD

    Automated detection of breast asymmetries

    No full text
    Breast asymmetry is an important radiological sign of cancer. This paper describes the first approach aiming to detect all types of asymmetry; previous asymmetrybased research has been focussed on the detection of mass lesions. The conventional approach is to search for brightness or texture differences between corresponding locations on left and right breast images. Due to the difficulty in accurately identifying corresponding locations, asymmetry cues generated in this way are insufficiently specific to be used as prompts for small and subtle abnormalities in a computer-aided diagnosis system. We have undertaken studies to discover more about the visual cues utilized by radiologists. As a result, we propose a new automatic method for detecting asymmetry based on the comparison of corresponding anatomical structures, identified by an automatic segmentation of breast tissue types. We describe methods for comparing the shape and brightness distribution of these regions, and we present results obtained by combining evidence for asymmetry.
    corecore