88 research outputs found

    Covid-19 patient detection based on fusion of transfer learning and fuzzy ensemble models using cxr images

    Full text link
    The COVID-19 pandemic has claimed the lives of millions of people and put a significant strain on healthcare facilities. To combat this disease, it is necessary to monitor affected patients in a timely and cost-effective manner. In this work, CXR images were used to identify COVID-19 patients. We compiled a CXR dataset with equal number of 2313 COVID positive, pneumonia and normal CXR images and utilized various transfer learning models as base classifiers, including VGG16, GoogleNet, and Xception. The proposed methodology combines fuzzy ensemble techniques, such as Majority Voting, Sugeno Integral, and Choquet Fuzzy, and adaptively combines the decision scores of the transfer learning models to identify coronavirus infection from CXR images. The proposed fuzzy ensemble methods outperformed each individual transfer learning technique and several state-of-the-art ensemble techniques in terms of accuracy and prediction. Specifically, VGG16 + Choquet Fuzzy, GoogleNet + Choquet Fuzzy, and Xception + Choquet Fuzzy achieved accuracies of 97.04%, 98.48%, and 99.57%, respectively. The results of this work are intended to help medical practitioners achieve an earlier detection of coronavirus compared to other detection strategies, which can further save millions of lives and advantageously influence society

    Analysis and Prediction of COVID-19 Using SIR, SEIQR, and Machine Learning Models: Australia, Italy, and UK Cases

    Full text link
    The novel coronavirus disease, also known as COVID-19, is a disease outbreak that was first identified in Wuhan, a Central Chinese city. In this report, a short analysis focusing on Australia, Italy, and UK is conducted. The analysis includes confirmed and recovered cases and deaths, the growth rate in Australia compared with that in Italy and UK, and the trend of the disease in different Australian regions. Mathematical approaches based on susceptible, infected, and recovered (SIR) cases and susceptible, exposed, infected, quarantined, and recovered (SEIQR) cases models are proposed to predict epidemiology in the above-mentioned countries. Since the performance of the classic forms of SIR and SEIQR depends on parameter settings, some optimization algorithms, namely Broyden–Fletcher–Goldfarb–Shanno (BFGS), conjugate gradients (CG), limited memory bound constrained BFGS (L-BFGS-B), and Nelder–Mead, are proposed to optimize the parameters and the predictive capabilities of the SIR and SEIQR models. The results of the optimized SIR and SEIQR models were compared with those of two well-known machine learning algorithms, i.e., the Prophet algorithm and logistic function. The results demonstrate the different behaviors of these algorithms in different countries as well as the better performance of the improved SIR and SEIQR models. Moreover, the Prophet algorithm was found to provide better prediction performance than the logistic function, as well as better prediction performance for Italy and UK cases than for Australian cases. Therefore, it seems that the Prophet algorithm is suitable for data with an increasing trend in the context of a pandemic. Optimization of SIR and SEIQR model parameters yielded a significant improvement in the prediction accuracy of the models. Despite the availability of several algorithms for trend predictions in this pandemic, there is no single algorithm that would be optimal for all cases

    Masonry compressive strength prediction using artificial neural networks

    Get PDF
    The masonry is not only included among the oldest building materials, but it is also the most widely used material due to its simple construction and low cost compared to the other modern building materials. Nevertheless, there is not yet a robust quantitative method, available in the literature, which can reliably predict its strength, based on the geometrical and mechanical characteristics of its components. This limitation is due to the highly nonlinear relation between the compressive strength of masonry and the geometrical and mechanical properties of the components of the masonry. In this paper, the application of artificial neural networks for predicting the compressive strength of masonry has been investigated. Specifically, back-propagation neural network models have been used for predicting the compressive strength of masonry prism based on experimental data available in the literature. The comparison of the derived results with the experimental findings demonstrates the ability of artificial neural networks to approximate the compressive strength of masonry walls in a reliable and robust manner.- (undefined

    Validation of a simplified micromodel for analysis of infilled RC frames exposed to cyclic lateral loads

    Get PDF
    An RC frame structure with masonry infill walls (‘‘framed-masonry’’) exposed to lateral loads acts as a composite structure. Numerical simulation of framed-masonry is difficult and generally unreliable due to many difficulties and uncertainties in its modelling. In this paper, we reviewed the usability of an advanced non-linear FEM computer program to accurately predict the behaviour of framed-masonry elements when exposed to cyclic lateral loading. Numerical results are validated against the test results of framedmasonry specimens, with and without openings. Initial simplified micromodels were calibrated by adjustment of the input parameters within the physically justifiable borders, in order to obtain the best correlation between the experimental and numerical results. It has been shown that the use of simplified micromodels for the investigation of composite masonry-infilled RC frames requires in-depth knowledge and engineering judgement in order to be used with confidence. Modelling problems were identified and explained in detail, which in turn offer an insight to practising engineers on how to deal with them

    Slope Stability Classification under Seismic Conditions Using Several Tree-Based Intelligent Techniques

    Get PDF
    Slope stability analysis allows engineers to pinpoint risky areas, study trigger mechanisms for slope failures, and design slopes with optimal safety and reliability. Before the widespread usage of computers, slope stability analysis was conducted through semi analytical methods, or stability charts. Presently, engineers have developed many computational tools to perform slope stability analysis more efficiently. The challenge associated with furthering slope stability methods is to create a reliable design solution to perform reliable estimations involving a number of geometric and mechanical variables. The objective of this study was to investigate the application of tree-based models, including decision tree (DT), random forest (RF), and AdaBoost, in slope stability classification under seismic loading conditions. The input variables used in the modelling were slope height, slope inclination, cohesion, friction angle, and peak ground acceleration to classify safe slopes and unsafe slopes. The training data for the developed computational intelligence models resulted from a series of slope stability analyses performed using a standard geotechnical engineering software commonly used in geotechnical engineering practice. Upon construction of the tree-based models, the model assessment was performed through the use and calculation of accuracy, F1-score, recall, and precision indices. All tree-based models could efficiently classify the slope stability status, with the AdaBoost model providing the highest performance for the classification of slope stability for both model development and model assessment parts. The proposed AdaBoost model can be used as a screening tool during the stage of feasibility studies of related infrastructure projects, to classify slopes according to their expected status of stability under seismic loading conditions

    On Random Subspace Optimization-Based Hybrid Computing Models Predicting the California Bearing Ratio of Soils

    Get PDF
    The California Bearing Ratio (CBR) is an important index for evaluating the bearing capacity of pavement subgrade materials. In this research, random subspace optimization-based hybrid computing models were trained and developed for the prediction of the CBR of soil. Three models were developed, namely reduced error pruning trees (REPTs), random subsurface-based REPT (RSS-REPT), and RSS-based extra tree (RSS-ET). An experimental database was compiled from a total of 214 soil samples, which were classified according to AASHTO M 145, and included 26 samples of A-2-6 (clayey gravel and sand soil), 3 samples of A-4 (silty soil), 89 samples of A-6 (clayey soil), and 96 samples of A-7-6 (clayey soil). All CBR tests were performed in soaked conditions. The input parameters of the models included the particle size distribution, gravel content (G), coarse sand content (CS), fine sand content (FS), silt clay content (SC), organic content (O), liquid limit (LL), plastic limit (PL), plasticity index (PI), optimum moisture content (OMC), and maximum dry density (MDD). The accuracy of the developed models was assessed using numerous performance indexes, such as the coefficient of determination, relative error, MAE, and RMSE. The results show that the highest prediction accuracy was obtained using the RSS-based extra tree optimization technique

    Masonry failure criterion under biaxial stress state

    No full text

    Strength of unreinforced masonry walls under concentrated compression loads

    No full text

    Evaluation of infilled frames: an updated in-plane-stiffness macro-model considering the effects of vertical loads

    Get PDF
    The influence of masonry infills on the in-plane behaviour of RC framed structures is a central topic in the seismic evaluation and retrofitting of existing buildings. Many models in the literature use an equivalent strut member in order to represent the infill but, among the parameters influencing the equivalent strut behaviour, the effect of vertical loads acting on the frames is recognized but not quantified. Nevertheless a vertical load causes a non-negligible variation in the in-plane behaviour of infilled frames by influencing the effective volume of the infill. This results in a change in the stiffness and strength of the system. This paper presents an equivalent diagonal pin-jointed strut model taking into account the stiffening effect of vertical loads on the infill in the initial state. The in-plane stiffness of a range of infilled frames was evaluated using a finite element model of the frame-infill system and the cross-section of the strut equivalent to the infill was obtained for different levels of vertical loading by imposing the equivalence between the frame containing the infill and the frame containing the diagonal strut. In this way a law for identifying the equivalent strut width depending on the geometrical and mechanical characteristics of the infilled frame was generalized to consider the influence of vertical loads for use in the practical applications. The strategy presented, limited to the initial stiffness of infilled frames, is preparatory to the definition of complete non-linear cyclic laws for the equivalent strut
    corecore