20 research outputs found

    Application of chemical geothermometers to a low temperature thermal system

    Get PDF
    The Tiermas geothermal system is one of the areas with the greatest geothermal potential in Aragón, however, its hydrogeological and geochemical features are still poorly known. In this study, the main hydrochemical features of these waters are presented and the reservoir temperature is approached by applying chemical geothermometers. These waters have a sulphate chloride sodium affinity, with nearly 40 ºC of spring temperature and an approximate flow rate of 200 l/s. The most likely aquifer seems to be located in the Paleocene and Eocene carbonates. However, due to the structural complexity of the area, the waters would also interact with the evaporitic facies present in the Eocene–Oligocene boundary. Two different hydrochemical groups have been distinguished based on their salinity, Na/Cl ratios, SO4 concentrations and TDS values. Despite the compositional variations detected in the springs, the geothermometric calculations allow to infer a reservoir temperature of 85 ± 17 °C. Good consistency has been obtained with the cationic geothermometers, which is an unusual situation for a geothermal system in carbonate–evaporitic materialsEl sistema geotermal de Tiermas representa una de las zonas con mayor potencial geotérmico de Aragón y, sin embargo, se sabe todavía poco acerca de sus características hidrológicas y geoquímicas. En este trabajo se presentan los principales rasgos hidroquímicos de estas aguas y se determina su temperatura en profundidad mediante la aplicación de geotermómetros químicos. Estas aguas tienen una afinidad clorurada sulfatada sódica, una temperatura de surgencia de casi 40 °C y un caudal de unos 200 l/s. El acuífero más probable se localizaría en los carbonatos del Paleoceno y Eoceno, pero debido a la complejidad estructural de la zona, las aguas entrarían en contacto con la facies evaporítica del tránsito Eoceno–Oligoceno, adquiriendo así dicha afinidad. Se han distinguido dos grupos hidroquímicos con una diferente salinidad, relación Na/Cl y concentraciones de SO4 y TSD. A pesar de las variaciones composicionales detectadas en las surgencias, los cálculos geotermométricos realizados permiten establecer un rango de temperaturas en el reservorio de 85 ± 17 °C, habiéndose obtenido buenos resultados con los geotermómetros catiónicos, situación poco habitual en sistemas termales instalados en materiales carbonatados – evaporítico

    Mineral equilibria and thermodynamic uncertainties in the geothermometrical characterisation of carbonate geothermal systems of low temperature. The case of the Alhama-Jaraba system (Spain)

    Get PDF
    Geothermometrical characterisation of low-temperature, carbonate-evaporitic geothermal systems is usually hampered by the lack of appropriate mineral equilibria to successfully use most of the classical geothermometers and/or by the thermodynamic uncertainties affecting some of the most probable mineral equilibria in low temperature conditions. This situation is further hindered if the thermal waters are additionally affected by secondary processes (e.g., CO2 loss) during their ascent to surface. All these problems cluster together in the low-temperature Alhama-Jaraba thermal system, hosted in carbonate rocks, with spring temperatures about 30 °C and waters of Ca-Mg−HCO3/SO4 type. This system, one of the largest naturally flowing (600 L/s) low temperature thermal systems in Europe, is used in this paper as a suitable frame to assess the problems in the application of chemical geothermometrical techniques (classical geothermometers and geothermometrical modelling) and to provide a methodology that could be used in this type of geothermal system or in potential CO2 storage sites in similar aquifers. The results obtained have shown that the effects of the secondary processes can be avoided by selecting the samples unaffected by such processes and, therefore, representative of the conditions at depth, or by applying existing methodologies to reconstruct the original composition, as is usually done for medium to high temperature systems. The effective mineral equilibria at depth depend on the temperature, the residence time and the specific lithological/mineralogical characteristics of the system studied. In the present case, the mineral equilibria on which classical cation geothermometers are based have not been attained. The low proportion of evaporitic minerals in the hosting aquifer prevents the system from reaching anhydrite equilibrium, otherwise common in carbonate-evaporitic systems and necessary for the specific SO4-F geothermometer or the specially reliable quartz (or chalcedony) – anhydrite equilibrium in the geothermometrical modelling of these geothermal systems. Under these circumstances, the temperature estimation must rely on quartz (or chalcedony), clay minerals and, especially, calcite and dolomite. However, clay minerals and dolomite present important thermodynamic uncertainties related to possible variations in composition or crystallinity degree for clays and order/disorder degree for dolomite. To deal with these problems, a sensitivity analysis to the thermodynamic data for clay minerals has been carried out, comparing the results obtained when considering different solubility data. The uncertainties associated with dolomite have been addressed by reviewing the solubility data available for dolomites with different order degrees and performing specific calculations for the order degree of the dolomite in the aquifer. This approach can be used to find the most adequate dolomite thermodynamic data for the system under consideration, including medium-high temperature geothermal systems. Finally, the temperature estimation of the Alhama-Jaraba waters in the deep reservoir has been obtained from simultaneous equilibria of quartz, calcite, partially disordered dolomite and some aluminosilicate phases. The obtained value of 51 ± 14 °C is within the uncertainty range normally affecting this type of estimations and is coherent with independent estimations from geophysical data

    Travertines associated with the Alhama-Jaraba thermal waters (NE, Spain): Genesis and geochemistry

    Get PDF
    Freshwater carbonates are interesting archives in palaeoenvironmental reconstructions. However, more studies of those systems are needed to fully understand past environments. In this work the actively-forming travertines of the Alhama-Jaraba thermal system were studied for the first time in order to evaluate the relationship between the geochemical and mineralogical composition and the environmental conditions during their formation. With that aim, a combination of petrographical, mineralogical, geochemical and stable isotope analyses were carried out. These carbonates provide a natural laboratory for the study of the effect of different variables (natural and anthropogenic) on carbonate precipitation. The results showed that there is a close relationship between the mineralogy of the solid precipitates and the formation temperature, and only the samples formed from overheated waters (40–60 °C) show significant concentrations of aragonite. Aragonite-bearing samples show higher concentrations in Sr, Ba and U while calcitic solids are enriched in Mg. These differences could be attributed to mineralogy, temperature or different precipitation rates. The geochemical evaluation of the chemistry of both the solids and their parental waters suggests that differences in the rate of CO2-degassing and, in some cases, evaporation are the primary environmental controls on isotopic compositions. In addition, the results show that, if strong evaporation and CO2-degassing are involved, calcite precipitation occurs under conditions of isotopic disequilibrium with its parental water. The results of our study are useful to interpret old depositional environments and palaeotemperatures

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Dissolution kinetics of marcasite at acidic pH

    No full text

    Late Pleistocene–Holocene environmental conditions in Lanzarote (Canary Islands) inferred from calcitic and aragonitic land snail shells and bird bones

    No full text
    Aragonitic and calcitic land snails from carbonate-rich paleosols in northwestern Lanzarote (Canary Islands) were analyzed for 13C/12C and 18O/16O ratios to deduce the Pleistocene–Holocene transition in the westernmost Sahara zone. Modern, mid-late Holocene (~ 2.1–5.5 cal ka BP) and late Pleistocene (~ 23.3–24.0 cal ka BP) aragonitic shells exhibited respective values of − 9.5 ± 1.6‰, − 7.7 ± 1.5‰, and − 2.3 ± 2.8‰ for δ13C; and + 0.3 ± 0.3‰, + 0.1 ± 0.7‰, and + 2.5 ± 0.4‰ for δ18O. Holocene and Pleistocene calcitic shells of the endemic slug Cryptella canariensis showed respective values of − 0.7 ± 2.6‰ and − 8.5 ± 2.5‰ for δ13C; and + 0.8 ± 1.5 and + 3.6 ± 0.4‰ for δ18O. Both aragonitic and calcitic shells showed equivalent temporal isotopic trends. Higher δ13C values during ~ 23.3–24.0 cal ka BP suggest higher abundance of C4 and/or CAM plants, likely associated with drier conditions and/or lower atmospheric CO2 concentration. Maximum shell δ18O values during ~ 23.3–24.0 cal ka BP opposes minimal values of Greenland ice cores and probably reflect the combined effects of (1) higher rain δ18O values linked to higher glacial seawater δ18O values and/or larger snail activity during summer seasons; (2) relative humidity values similar or slightly lower than at present; (3) higher evaporation rates; and (4) cooler temperatures. Bone remains of the extinct Dune Shearwater Puffinus holeae were only recovered from the Holocene bed. Collagen δ13C and δ15N values (− 13.5 ± 0.2‰[PDB] and + 13.7 ± 1.0‰[air], respectively) match with the signature of a low trophic level Macaronesian seabird that fed upon local fish. Bone carbonate δ13C (− 7.4 ± 1.0‰[PDB]) and phosphate δ18O (+ 18.2 ± 0.4‰[SMOW]) values exhibited pristine signals denoting their potential value in future paleoenvironmental studies in the region. The age of P. holeae (~ 2.1–2.7 cal ka BP) supports that the aboriginal population possibly caused its extinction. In contrast, the extinction of the endemic helicid Theba sp. (~ 23.3–24.0 cal ka BP) was likely caused by environmental change

    Hydrogeochemical characterization of an evaporite karst area affected by sinkholes (Ebro Valley, NE Spain)

    No full text
    The main processes controlling the hydrochemistry of an alluvium-covered evaporite karst area with high sinkhole risk (Ebro Valley, NE Spain) are examined by means of multivariate analyses (Principal Component Analysis and Hierarchical Cluster Analysis), ion correlations and geochemical speciation-solubility calculations. The hydrogeochemistry of the studied system seems to be governed by the interaction between the groundwater from the salt-bearing evaporitic karst aquifer and from the overlying Ebro River alluvial aquifer. The observed hydrochemical features in the alluvial-karst aquifer system are mainly determined by the relative contribution of gypsum/anhydrite and halite dissolution, showing a wide spectrum from relatively fresh recharge waters (mainly irrigation waters) to highly evolved groundwater from the evaporitic aquifer. The variability of these contributions is especially evident at sinkhole ponds which, in some cases, seem to be associated with discharge areas of the karst aquifer in the valley bottom alluvium. Calculated saturation indexes suggest that, in contrast to gypsum, the amounts of halite in the sampled portions of evaporitic aquifer are not large enough to attain equilibrium, which is consistent with the predominance of gypsum/anhydrite reported for these materials. Furthermore, the observed Na:Cl and Ca:SO4 correlations and stoichiometries suggest that other possible processes, such as glauberite dissolution or Na/Ca-exchange, generally play a minor role (compared to halite and gypsum dissolution) in this system. Another important process in the system is the dissolution of carbonate minerals (dolomite and, possibly, calcite) fostered by the input of CO2(g), which is probably produced by pedogenic processes. Dolomite dissolution seems to be particularly relevant in the evaporitic materials probably due to dedolomitisation triggered by gypsum/anhydrite dissolution
    corecore