8 research outputs found

    Membrane transporters in the bioproduction of organic acids: state of the art and future perspectives for industrial applications

    Get PDF
    Organic acids such as monocarboxylic acids, dicarboxylic acids or even more complex molecules such as sugar acids, have displayed great applicability in the industry as these compounds are used as platform chemicals for polymer, food, agricultural and pharmaceutical sectors. Chemical synthesis of these compounds from petroleum derivatives is currently their major source of production. However, increasing environmental concerns have prompted the production of organic acids by microorganisms. The current trend is the exploitation of industrial biowastes to sustain microbial cell growth and valorize biomass conversion into organic acids. One of the major bottlenecks for the efficient and cost-effective bioproduction is the export of organic acids through the microbial plasma membrane. Membrane transporter proteins are crucial elements for the optimization of substrate import and final product export. Several transporters have been expressed in organic acid-producing species, resulting in increased final product titers in the extracellular medium and higher productivity levels. In this review, the state of the art of plasma membrane transport of organic acids is presented, along with the implications for industrial biotechnology.This work was supported by the strategic programme UID/BIA/04050/2019 funded by Portuguese fundsthrough the FCT I.P., and the projects: PTDC/BIAMIC/5184/2014, funded by national funds through the Fundacao para a Ciencia e Tecnologia (FCT) I.P. and by the European Regional Development Fund (ERDF) through the COMPETE 2020-Programa Operacional Competitividade e Internacionalizacao (POCI), and EcoAgriFood: Innovative green products and processes to promote AgriFood BioEconomy (operacao NORTE-01-0145-FEDER-000009), supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). DR acknowledges FCT for the SFRH/BD/96166/2013 PhD grant. MSS acknowledges the Norte2020 for the UMINHO/BD/25/2016 PhD grant with the reference NORTE-08-5369-FSE-000060. TR acknowledges Yeastdoc European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 764927

    Cemetery, Military

    No full text

    Oxygen-dependent niche formation of a pyrite-dependent acidophilic consortium built by archaea and bacteria

    No full text
    Biofilms can provide a number of different ecological niches for microorganisms. Here, a multispecies biofilm was studied in which pyrite-oxidizing microbes are the primary producers. Its stability allowed not only detailed fluorescence in situ hybridization (FISH)-based characterization of the microbial population in different areas of the biofilm but also to integrate these results with oxygen and pH microsensor measurements conducted before. The O2 concentration declined rapidly from the outside to the inside of the biofilm. Hence, part of the population lives under microoxic or anoxic conditions. Leptospirillum ferrooxidans strains dominate the microbial population but are only located in the oxic periphery of the snottite structure. Interestingly, archaea were identified only in the anoxic parts of the biofilm. The archaeal community consists mainly of so far uncultured Thermoplasmatales as well as novel ARMAN (Archaeal Richmond Mine Acidophilic Nanoorganism) species. Inductively coupled plasma analysis and X-ray absorption near edge structure spectra provide further insight in the biofilm characteristics but revealed no other major factors than oxygen affecting the distribution of bacteria and archaea. In addition to catalyzed reporter deposition FISH and oxygen microsensor measurements, microautoradiographic FISH was used to identify areas in which active CO2 fixation takes place. Leptospirilla as well as acidithiobacilli were identified as primary producers. Fixation of gaseous CO2 seems to proceed only in the outer rim of the snottite. Archaea inhabiting the snottite core do not seem to contribute to the primary production. This work gives insight in the ecological niches of acidophilic microorganisms and their role in a consortium. The data provided the basis for the enrichment of uncultured archaea
    corecore