85 research outputs found

    Ό-calpain binds to lipid bilayers via the exposed hydrophobic surface of its Ca2+-activated conformation

    Get PDF
    Ό- and m-calpain are cysteine proteases requiring micro- and millimolar Ca2+ concentrations for their activation in vitro. Among other mechanisms, interaction of calpains with membrane phospholipids has been proposed to facilitate their activation by nanomolar {[}Ca2+] in living cells. Here the interaction of non-autolysing, C115A active-site mutated heterodimeric human Ό-calpain with phospholipid bilayers was studied in vitro using protein-to-lipid fluorescence resonance energy transfer and surface plasmon resonance. Binding to liposomes was Ca2+-dependent, but not selective for specific phospholipid. head groups. {[}Ca2+](0.5) for association with lipid bilayers was not lower than that required for the exposure of hydrophobic surface (detected by TNS fluorescence) or for enzyme activity in the absence of lipids. Deletion of domain V reduced the lipid affinity of the isolated small subunit (600-fold) and of the heterodimer (10- to 15-fold), thus confirming the proposed role of domain V for membrane binding. Unexpectedly, mutations in the acidic loop of the `C2-like' domain III, a putative Ca2+ and phospholipid-binding site, did not affect lipid affinity. Taken together, these results support the hypothesis that in vitro membrane binding of Ό-calpain is due to the exposed hydrophobic surface of the active conformation and does not reduce the Ca2+ requirement for activation

    Epoxysuccinyl peptide-derived cathepsin B inhibitors: Modulating membrane permeability by conjugation with the C-terminal heptapeptide segment of penetratin

    Get PDF
    Besides its physiological role in lysosomal protein breakdown, extralysosomal cathepsin B has recently been implicated in apoptotic cell death. Highly specific irreversible cathepsin B inhibitors that are readily cellpermeant should be useful tools to elucidate the effects of cathepsin B in the cytosol. We have covalently functionalised the poorly cellpermeant epoxysuccinyl based cathepsin B inhibitor [RGlyGlyLeu(2S, 3S)tEpsLeuProOH; R=OMe] with the C-terminal heptapeptide segment of penetratin (R=ΔAhxArg ArgNleLysTrpLysLysNH(2)). The high inhibitory potency and selectivity for cathepsin B versus cathepsin L of the parent compound was not affected by the conjugation with the penetratin heptapeptide. The conjugate was shown to efficiently penetrate into MCF-7 cells as an active inhibitor, thereby circumventing an intracellular activation step that is required by other inhibitors, such as the prodruglike epoxysuccinyl peptides E64d and CA074Me

    Ό-calpain binds to lipid bilayers via the exposed hydrophobic surface of its Ca2+-activated conformation

    Get PDF
    Ό- and m-calpain are cysteine proteases requiring micro- and millimolar Ca2+ concentrations for their activation in vitro. Among other mechanisms, interaction of calpains with membrane phospholipids has been proposed to facilitate their activation by nanomolar {[}Ca2+] in living cells. Here the interaction of non-autolysing, C115A active-site mutated heterodimeric human Ό-calpain with phospholipid bilayers was studied in vitro using protein-to-lipid fluorescence resonance energy transfer and surface plasmon resonance. Binding to liposomes was Ca2+-dependent, but not selective for specific phospholipid. head groups. {[}Ca2+](0.5) for association with lipid bilayers was not lower than that required for the exposure of hydrophobic surface (detected by TNS fluorescence) or for enzyme activity in the absence of lipids. Deletion of domain V reduced the lipid affinity of the isolated small subunit (600-fold) and of the heterodimer (10- to 15-fold), thus confirming the proposed role of domain V for membrane binding. Unexpectedly, mutations in the acidic loop of the `C2-like' domain III, a putative Ca2+ and phospholipid-binding site, did not affect lipid affinity. Taken together, these results support the hypothesis that in vitro membrane binding of Ό-calpain is due to the exposed hydrophobic surface of the active conformation and does not reduce the Ca2+ requirement for activation

    Rapid enzymatic test for phenotypic HIV protease drug resistance

    Get PDF
    A phenotypic resistance test based on recombinant expression of the active HIV protease in E. coli from patient blood samples was developed. The protease is purified in a rapid onestep procedure as active enzyme and tested for inhibition by five selected synthetic inhibitors (amprenavir, indinavir, nelfinavir, ritonavir, and saquinavir) used presently for chemotherapy of HIVinfected patients. The HPLC system used in a previous approach was replaced by a continuous fluorogenic assay suitable for highthroughput screening on microtiter plates. This reduces significantly the total assay time and allows the determination of inhibition constants (K-i). The Michaelis constant (K-m) and the inhibition constant (K-i) of recombinant wildtype protease agree well with published data for cloned HIV protease. The enzymatic test was evaluated with recombinant HIV protease derived from eight HIVpositive patients scored from sensitive to highly resistant according to mutations detected by genotypic analysis. The measured K-i values correlate well with the genotypic resistance scores, but allow a higher degree of differentiation. The noninfectious assay enables a more rapid yet sensitive detection of HIV protease resistance than other phenotypic assays

    Ό-Calpain binds to lipid bilayers via the exposed hydrophobic surface of its Ca2+-activated conformation

    Get PDF
    ÎŒ- and m-calpain are cysteine proteases requiring micro- and millimolar Ca2+ concentrations for their activation in vitro. Among other mechanisms, interaction of calpains with membrane phospholipids has been proposed to facilitate their activation by nanomolar [Ca2+] in living cells. Here the interaction of non-autolysing, C115A active-site mutated heterodimeric human ÎŒ-calpain with phospholipid bilayers was studied in vitro using protein-to-lipid fluorescence resonance energy transfer and surface plasmon resonance. Binding to liposomes was Ca2+-dependent, but not selective for specific phospholipid head groups. [Ca2+]0.5 for association with lipid bilayers was not lower than that required for the exposure of hydrophobic surface (detected by TNS fluorescence) or for enzyme activity in the absence of lipids. Deletion of domain V reduced the lipid affinity of the isolated small subunit (600-fold) and of the heterodimer (10- to 15-fold), thus confirming the proposed role of domain V for membrane binding. Unexpectedly, mutations in the acidic loop of the ‘C2-like' domain III, a putative Ca2+ and phospholipid-binding site, did not affect lipid affinity. Taken together, these results support the hypothesis that in vitro membrane binding of ÎŒ-calpain is due to the exposed hydrophobic surface of the active conformation and does not reduce the Ca2+ requirement for activatio

    Temporary inhibition of papain by hairpin loop mutants of chicken cystatin Distorted binding of the loops results in cleavage of the Gly9-Ala10 bond

    Get PDF
    AbstractTemporary inhibition of the cysteine proteinases papain and cathepsin L was observed with several hairpin loop mutants of recombinant chicken cystatin at enzyme concentrations above nanomolar. Kinetic modelling of inhibition data, gel electrophoresis and amino acid sequencing revealed that reappearance of papain activity is due to selective cleavage of the Gly9-Ala10 bond in the N-terminal binding area of the chicken cystatin variants, resulting in truncated inhibitors of lower affinity. Cleavage of the same bond by contaminating papaya proteinase IV was ruled out by previous purification of papain and suitable control experiments. According to the proposed kinetic model, cleavage occurs within the enzyme-inhibitor complex with first order rate constants ktemp of 2.3 × 10−3 up to 5 × 10−1 s−1. A similar ktempKm ratio was found for all mutants (0.7 × 106–2.1 × 106 s−1·M−1); it is almost identical with the kcatKm ratio of the peptide substrate Z-Phe-Arg-NHMec. These results suggest that distorted contacts of one of the hairpin loops affect binding of the N-terminal contact area in a way that covalent interaction of the Gly9-Ala10 bond with the active-site Cys residue of papain can occur and the bond is cleaved in a substrate-like manner
    • 

    corecore