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Lysosomal Cysteine Proteinases as Mediators of Inflammation and Tumor 
Spread: Control of their Extracellular Proteolytic Activity 

W. Machleidt, I . Assfalg-Machleidt, M . Jochum, F. Jänicke, Μ. Schmitt 

SUMMARY. The lysosomal cysteine proteinases cathepsin Β and L have been implicated in proteolytic 
pathomechanisms of inflammation and tumor spread. Data obtained with ex vivo samples of blood plasma and 
inflammatory secretions as well as tumor homogenates suggest that both enzymes are sufficiently stable at 
neutral to alkaline pH to remain active for a limited time in the extracellular space. Whereas cathepsin L should 
be proteolytically active only under conditions of local inhibitor deficit, cathepsin Β is unique in its loose binding 
to endogenous protein inhibitors and its ability to dissociate as active enzyme from its inhibitor complexes. 

A major group of proteinases responsible for intra­
cellular protein degradation are the cysteine proteinases 
cathepsin Β, H, L, and S ( s e e Barrett et al. 1 for review). 
Normally they act within lysosomes, but it is known that 
they can be released by tumor cells2 and active phago­
cytes3 into the extracellular space. Limited cleavage and 
inactivation of various functionally important proteins by 
cathepsins L and Β has been demonstrated in v i t r o 1 , 4 - 9 

suggesting that these cysteine proteinases may be 
involved in destructive proteolytic processes occurring in 
vivo during severe inflammation and at certain stages of 
tumor cell invasion and metastasis. 

After it had been discovered that the lysosomal 
cysteine proteinases are rapidly inactivated by exposure 
to neutral or alkaline pH and/or oxidizing conditions as 
well as by complex formation with protein inhibitors1, 
extracellular proteolysis by the discharged enzymes 
seemed questionable. Therefore we have studied in more 
detail the activity of cysteine proteinases and their inter­
action with endogenous protein inhibitors in ex vivo 
samples obtained from patients with inflammatory 
diseases and, more recently, in tumor extracts. Some of 
the results presented in this communication may help to 
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understand the role of cysteine proteinases in 
tumor-associated proteolysis. 

MATERIALS AND METHODS 

Clinical studies on inflammatory diseases were per­
formed as described. 1 0" 1 4 The design of the clinical 
study on breast cancer patients, extraction of tumor 
samples and protein determination have been reported by 
Jänicke et al. 

Cathepsin Β antigen was determined with a commer­
cial ELISA (Medor, D-8036 Herrsching); cathepsin Β 
activity at 30°C was measured with the fluorogenic 
substrate Z-Arg-Arg-NH-Mec (0.15 mM) and the 
specific inhibitor E-64 using the assay described 
earlier. 1 1 , 1 3 One unit of enzyme activity (1 U) is the 
amount of enzyme catalyzing the turnover of 1 μπιοί 
substrate per min under the conditions of the assays. 

Previously published procedures were used for the 
determination of inhibition constants and rate constants 
of complex formation, 1 6 for dilution experiments 1 1 , 1 3 

and measurement of resorufin-casein proteolysis.14 

Cathepsin Β (human liver) and cathepsin L (human 
kidney), human stefin A, and human stefin Β were 
obtained from Medor (Herrsching). 

RESULTS AND DISCUSSION 

Cysteine Proteinases in Inflammation 

Proteolysis seems to play an important role in the 
response of the organism to inflammatory stimuli like 

125 



126 L y s o s o m a l Cyste ine Proteinases as Mediators 

tissue destruction due to multiple trauma and major 
surgery or invasive microorganisms and endotoxins in 
sepsis. In this respect, the lysosomal serine proteinase 
elastase, and the cysteine proteinases cathepsin L and Β 
of polymorphonuclear (PMN) granulocytes and mono­
cytes/macrophages are supposed to be potent mediators 
and/or effectors of tissue damage when they are 
discharged extracellularly by activated phagocytes. 

A presumable inflammatory effector role proved 
especially true for PMN elastase because the destructive 
potency of this proteinase could be convincingly demon­
strated not only in vitro but also in vivo at least on vital 
humoral proteins in relation to the development of organ 
dysfunctions in traumatized patients (see Jochum et a l . 1 0 

for review). In local inflammatory secretions, such as the 
epithelial lining fluid (ELF) of the shock lung of a 
polytraumatized patient, the major portion of the prot­
eolytic activity measurable by resorufin-casein proteo­
lysis can be suppressed by the addition of αϊ -proteinase 
inhibitor indicating that it is mainly due to PMN elastase 
(Fig. 1). However, in the course of the same respiratory 
distress syndrome also the cysteine proteinase cathepsin 
Β is released into the ELF, but not strictly parallel with 
PMN elastase. 

We have collected plenty of evidence that cathepsin 
Β is discharged from monocytes/macrophages during 
local and systemic inflammation and that the cathepsin Β 
activity of blood plasma and local secretions (ELF, 
peritonitis exudate, synovial fluid) correlates with the 
severity of inflammation and the clinical manifestation 
of organ dysfunction. 1 0" 1 4 

Whereas PMN elastase is usually determined in the 
form of its complex with cti-proteinase inhibitor, cath­
epsin Β is detectable by its enzymatic activity using 
sensitive fluorogenic peptide substrates and the specific 
inhibitor E-64 (see Assfalg-Machleidt 1 1 , 1 3 for details). 
So far no cathepsin L activity has been found extra­
cellularly because this cysteine proteinase is very tightly 
bound to the protein inhibitors (see below). 

Typically, extracellular levels of released cathepsin Β 
are 1-2 orders of magnitude lower than those of simult­
aneously discharged PMN elastase (Table 1), with the 
exception of the perfusion fluid of liver transplants 
where enormous amounts of cathepsin Β seem to origin­
ate from hypoxic cells of the reticuloendothelial 

17 

system. 
According to in vitro experiments, the non-specific 

proteolytic potency of cathepsin Β is rather limited com­
pared to that of cathepsin L (Table 2). Cathepsin L is a 
potent elastase comparable to PMN elastase5 and is able 
to inactivate oci-proteinase inhibitor effectively4 suggest­
ing that lysosomal cysteine and serine proteinases may 
cooperate in proteolysis-induced pathomechanisms of 
inflammation. Cathepsin H, predominantly an amino-
peptidase, has almost no detectable effects on proteins. 

Until now, a destructive effect of cysteine proteinases 
has not been demonstrated in vivo, but we were able to 
show that limited proteolysis of immunoglobulin G 
(IgG) in peritonitis exudates is partially due to E-64-
sensitive cysteine proteinases.1 Very recently, the 

Day 

F l g . 1 Cathepsin Β activity (filled circles) and non-specific proteolysis 
of resorufin-casein (filled triangles) in bronchoalaveolar lavage fluid of 
a polytraumatized patient suffering from an adult respiratory distress 
syndrome ( A R D S ) . Open triangles, resorufin-casein proteolysis in the 
presence of αϊ-proteinase inhibitor (45 μΜ). 

T a b l e 1 E^64-sensit ive cysteine proteinase activity. Peak values 
measured in blood p lasma and inflammatory secretions. T h e 
concentrations o f the cti -PI -elastase complex determined by E L I S A 
are included for comparison 

Activity Cathepsin Β a i - P / -

Sample Uli equivalent* elastase 

ngfml nglml 

B lood p l a s m a 

normal 0.09 1.1 120 

polytrauma, sepsis 0.8 10 1400 

S y n o v i a l fluid 

traumatic arthritis 0.8 10 9 0 0 0 

B r o n c h o a l v e o l a r l avage fluid 

shock lung ( A R D S ) 10 120 2 0 0 0 

Per i tonea ) exudate 

diffuse peritonitis 5 0 6 0 0 120000 

L i v e r per fusate 

l iver transplants 5 0 0 6 0 0 0 1400 

•calculated on the basis o f a specific activity of 80 U/mg 1 1 

T a b l e 2 Resorufin-casein proteolysis by lysosomal proteinases 

Enzyme pH Relative proteolytic 
activity per \ig 

of enzyme 

P M N elastase 7.4 1.0 

Cathepsin L 5.5 1.1 

Cathepsin Β 5.5 0.1 

Cathepsin Η 5.5 < 0 . 0 1 

restricted proteolytic potency of cathepsin Β (as 
compared to cathepsin L) has been explained by the 
existence of an Occluding loop* in the cathepsin Β 
structure making its endopeptidase activity highly 
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dependent on the conformation of the substrate 
proteins.19 

Cysteine Proteinases of Tumor Cells 

The lysosomal cysteine proteinases cathepsin Β and L 
have been suggested to play a role in tumor cell invasion 
and spread, either directly by cleaving extracellular 
matrix proteins or indirectly by activating other protein­
ases.2 Cathepsin Β and L have been shown in vitro to 
degrade type IV collagen, laminin and fibronectin at 
both acid and neutral pH. 9 Both enzymes are able to 
activate the proenzyme form of the urokinase-type 
plasminogen activator (pro-uPA) which is secreted by 
tumor cells and can bind to receptors on the tumor cell 
surface. 2 0 , 2 1 In this cascade mechanism the lysosomal 
cysteine proteinases may function as effective mediators 
of tumor-associated proteolysis. 

There have been many reports on increased prod­
uction and secretion of cysteine proteinases by cultivated 
tumor cells2, but relatively few data are available on the 
role of these proteinases in clinical cancer. Therefore we 
started investigate this problem within a follow-up study 
with patients undergoing surgery for breast cancer. 
Preliminary results obtained with part of the patients 
included in this study indicated that the tumor extracts (n 
= 53) contained elevated levels of cathepsin Β antigen 
(1563 ± 1066 ng/mg of tissue protein; mean ± S.D.) 
compared to benign controls (n = 5; 281 ± 156 ng/mg). 
The broad distribution of cathepsin Β levels (Fig. 2) 
suggests that the cathepsin Β content of tumor cells may 
represent a novel differentiating prognostic factor that 
wi l l have to be evaluated and correlated with the other 
factors of the study. This view is supported by results of 
flow cytometry with cathepsin Β antibodies showing 
increased cathepsin Β content along with increased 
number of uPA receptors on the tumor cells (see N. 
Chucholowski et al., this issue). 
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F i g . 2 Distribution o f cathepsin Β antigen concentration in homogenates 
of breast cancer tissue (n - 53) and normal breast tissue controls (n - 5; 
hatched areas) as determined by E L I S A . 
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F i g . 3 Dissociation o f cathepsin Β activity on dilution of a peritonitis 
exudate. The active inhibitor concentration of the undiluted sample 
(1350 nM) was determined by titration of E - 6 4 standardized papain. The 
dissociation curve was obtained by nonlinear regression analysis of the 
experimental data. 

Extracellular Activity of Cysteine Proteinases 

The pathobiochemical significance of released lysosomal 
cysteine proteinases in inflammation and tumor spread 
depends on their enzymatic activity outside the 
lysosome. We have found that, in contrast to earlier 
expectations, inactivation at neutral to alkaline pH does 
not preclude extracellular proteolytic activity. Half lifes 
at pH 7.40 (determined in continuous assays with small 
peptide substrates) were about 50-60 min for isolated 
cathepsin Β and about 8 min for cathepsin L. Half-lifes 
at pH 7.40 of the cathepsin Β activity of the breast 
cancer extracts (52-62 min) were identical with those of 
the isolated enzyme. The observed drastically increased 
inactivation at more alkaline pH may explain the low 
recovery of cathepsin Β activity from the tumor extracts 
performed at pH 8.5 in this study. In a preliminary 
evaluation of 149 breast cancer tissue extracts we found 
a cathepsin Β activity of 535 ±119 mU/g (mean ± S.D.) 
compared to 45 ± 29 mU/g for 7 benign controls. About 
4-fold higher activity of tumor homogenates has been 
reported by Dengler et a l . 2 2 who extracted at pH 6.9. 

Detailed kinetic studies revealed that the cysteine 
proteinase activity determined in the tumor extracts of 
our study was almost completely due to cathepsin B. 
This was confirmed by the determination of an inhibition 
constant of 3.2 nM for chicken cystatin which is close to 
that of isolated cathepsin Β (2.9 nM). 

Extracellular cysteine proteinase activity is 
controlled by a high potential of endogenous cysteine 
proteinase inhibitors (CPI), such as the kininogens and 
the 'low-Mr' cystatins, like cystatin C and the stefins A 
and Β (see Barrett et a l . 2 3 for review). Cathepsin L is 
very tightly bound by all of these inhibitors (Table 3) 
and should have almost no chance to remain active in the 
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T a b l e 3 Inhibition o f cathepsin Β (Cath B ) and cathepsin L (Cath L ) by the p lasma protein inhibitors. It, inhibitor concentration in blood 
plasma; Κι, inhibition constant 

hnM K\nM im 
CathL Cath Β CathL Cath Β 

Kininogens 5OO0 1 0.012 3 9 0 4 x 1 0 s 13 

C y s t a t i n C 1 0 0 b < 0.005 0.8 2 x 1 0 * 125 

Stefin A < 2 0 b 0.010 2.7 2 X 1 Ö 3 7 

Stefin Β < 1 0 b 0.003 7 4 3 χ 10* 0.1 

"active concentration determined by titration 
b 25 
antigen concentrations from Abrahamson et al. 

extracellular space unless the inhibitory capacity is 
drastically reduced. Therefore, concentrations and activ­
ity of CPI in and around tumor cells need to be invest­
igated in more detail. Membrane-associated cathepsins 
that have been observed in tumor cells 2 4 may be able to 
escape inhibition by the extracellular CPI. 

In contrast to cathepsin L, cathepsin Β is only loosely 
bound by all CPI, especially by the kininogens which 
represent the major CPI of blood plasma.1 We have 
shown that cathepsin Β readily dissociates from its 
inhibitor complexes whenever the inhibitor concent­
ration is reduced (Fig. 3). This dissociation may be 
enhanced by the presence of a good protein substrate. In 
tissues, the control of extracellular cysteine proteinase 
activity should depend critically on the active concent­
rations of stefins and cystatins which are not known. 
Moreover, altered 'tumor stefins' of reduced affinity for 
cathepsin Β have been described.2 The physiological 
significance of such findings remains to be established, 
however, as both stefins are 'slow-binding' inhibitors of 
cathepsin Β requiring at least several minutes for 
complex formation. 16 

CONCLUSIONS 

Extracellular control of the proteolytic activity of 
discharged lysosomal cysteine proteinases seems to be 
incomplete allowing these enzymes to play role in 
proteolysis-induced pathomechanisms of inflammation 
and tumor spread. 
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