8 research outputs found

    Mechanistic insights into the activation of the IKK kinase complex by the Kaposi’s Sarcoma Herpes virus oncoprotein vFLIP

    Get PDF
    Constitutive activation of the canonical NF-κB signaling pathway is a major factor in Kaposi’s Sarcoma Herpes virus (KSHV) pathogenesis where it is essential for the survival of primary effusion lymphoma (PEL). Central to this process is persistent upregulation of the inhibitor of κB kinase (IKK) kinase complex by the virally encoded oncoprotein vFLIP. Although the physical interaction between vFLIP and the IKK kinase regulatory component essential for persistent activation, IKKγ, has been well characterized, it remains unclear how the kinase subunits are rendered active mechanistically. Using a combination of cell-based assays, biophysical techniques, and structural biology, we demonstrate here that vFLIP alone is sufficient to activate the IKK kinase complex. Furthermore, we identify weakly stabilised, high molecular weight vFLIP-IKKγ assemblies that are key to the activation process. Taken together, our results are the first to reveal that vFLIP induced NF-κB activation pivots on the formation of structurally specific vFLIP-IKKγ multimers which have an important role in rendering the kinase subunits active through a process of autophosphorylation. This mechanism of NF-κB activation is in contrast to those utilised by endogenous cytokines and cellular FLIP homologues

    Biophysical Characterization of Pro-apoptotic BimBH3 Peptides Reveals an Unexpected Capacity for Self-Association

    Get PDF
    Bcl-2 proteins orchestrate the mitochondrial pathway of apoptosis, pivotal for cell death. Yet, the structural details of the conformational changes of pro- and antiapoptotic proteins and their interactions remain unclear. Pulse dipolar spectroscopy (double electron-electron resonance [DEER], also known as PELDOR) in combination with spin-labeled apoptotic Bcl-2 proteins unveils conformational changes and interactions of each protein player via detection of intra- and inter-protein distances. Here, we present the synthesis and characterization of pro-apoptotic BimBH3 peptides of different lengths carrying cysteines for labeling with nitroxide or gadolinium spin probes. We show by DEER that the length of the peptides modulates their homo-interactions in the absence of other Bcl-2 proteins and solve by X-ray crystallography the structure of a BimBH3 tetramer, revealing the molecular details of the inter-peptide interactions. Finally, we prove that using orthogonal labels and three-channel DEER we can disentangle the Bim-Bim, Bcl-xL-Bcl-xL, and Bim-Bcl-xL interactions in a simplified interactome.This work was funded by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—EXC-2033—Projektnummer 390677874, the DFG Priority Program SPP1601 “New Frontiers in Sensitivity in EPR Spectroscopy” (to E.B.), DFG BO 3000/5-1 (to E.B.), SFB958 – Z04 (to E.B.), DFG grant INST 130/972-1 FUGG (to E.B.). P.E.C. is supported by an Australian NHMRC fellowship (1079700

    Light-Driven Domain Mechanics of a Minimal Phytochrome Photosensory Module Studied by EPR

    No full text
    Light-exposed organisms developed photoreceptors to transduce light signals for environmental adaptation. Phytochromes, found in bacteria, fungi, and plants, can discriminate the ratio of red and far-red light using the isomerization of a bilin chromophore bound to a photosensory module to trigger down- stream conformational changes in the protein. Here, we investigated by hydrogen/deuterium exchange mass spectrometry and electron paramagnetic resonance spectroscopy the light-driven domain mechanics of a minimal monomeric photosensory module from the group II phytochrome Cph2 from Synechocystis sp. PCC 6803. We could unambigu- ously trace the light-driven secondary structural rearrangement of its tongue region, and we found a translational motion of the PHY domain that is related to what was found before by X-ray studies in a group I module. Our analysis demonstrates a common light response in the photosensory modules of phyto- chromes, orchestrated solely by the GAF-PHY bido-main independent of further quaternary interactions or the nature of downstream effector domains

    Topology of active, membrane-embedded Bax in the context of a toroidal pore

    No full text
    Bax is a Bcl-2 protein critical for apoptosis induction. In healthy cells, Bax is mostly a monomeric, cytosolic protein, while upon apoptosis initiation it inserts into the outer mitochondrial membrane, oligomerizes, and forms pores that release proapoptotic factors like Cytochrome c into the cytosol. The structures of active Bax and its homolog Bak are only partially understood and the topology of the proteins with respect to the membrane bilayer is controversially described in the literature. Here, we systematically review and examine the protein–membrane, protein–water, and protein–protein contacts of the nine helices of active Bax and Bak, and add a new set of topology data obtained by fluorescence and EPR methods. We conclude based on the consistent part of the datasets that the core/dimerization domain of Bax (Bak) is water exposed with only helices 4 and 5 in membrane contact, whereas the piercing/latch domain is in peripheral membrane contact, with helix 9 being transmembrane. Among the available structural models, those considering the dimerization/core domain at the rim of a toroidal pore are the most plausible to describe the active state of the proteins, although the structural flexibility of the piercing/latch domain does not allow unambiguous discrimination between the existing models.</p

    gem‐Diethyl Pyrroline Nitroxide Spin Labels: Synthesis, EPR Characterization, Rotamer Libraries and Biocompatibility

    No full text
    The availability of bioresistant spin labels is crucial for the optimization of site‐directed spin labeling protocols for EPR structural studies of biomolecules in a cellular context. As labeling can affect proteins’ fold and/or function, having the possibility to choose between different spin labels will increase the probability to produce spin‐labeled functional proteins. Here, we report the synthesis and characterization of iodoacetamide‐ and maleimide‐functionalized spin labels based on the gem‐diethyl pyrroline structure. The two nitroxide labels are compared to conventional gem‐dimethyl analogs by site‐directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy, using two water soluble proteins: T4 lysozyme and Bid. To foster their use for structural studies, we also present rotamer libraries for these labels, compatible with the MMM software. Finally, we investigate the “true” biocompatibility of the gem‐diethyl probes comparing the resistance towards chemical reduction of the NO group in ascorbate solutions and E. coli cytosol at different spin concentrations

    NMR and EPR-DEER Structure of a Dimeric Guanylate Cyclase Activator Protein-5 from Zebrafish Photoreceptors.

    No full text
    Retinal guanylate cyclases (RetGCs) are regulated by a family of guanylate cyclase-activating proteins (called GCAP1-7). GCAPs form dimers that bind to Ca2+ and confer Ca2+ sensitive activation of RetGC during visual phototransduction. The GCAP5 homologue from zebrafish contains two nonconserved cysteine residues (Cys15 and Cys17) that bind to ferrous ion, which stabilizes GCAP5 dimerization and diminishes its ability to activate RetGC. Here, we present NMR and EPR-DEER structural analysis of a GCAP5 dimer in the Mg2+-bound, Ca2+-free, Fe2+-free activator state. The NMR-derived structure of GCAP5 is similar to the crystal structure of Ca2+-bound GCAP1 (root-mean-square deviation of 2.4 Å), except that the N-terminal helix of GCAP5 is extended by two residues, which allows the sulfhydryl groups of Cys15 and Cys17 to become more solvent exposed in GCAP5 to facilitate Fe2+ binding. Nitroxide spin-label probes were covalently attached to particular cysteine residues engineered in GCAP5: C15, C17, T26C, C28, N56C, C69, C105, N139C, E152C, and S159C. The intermolecular distance of each spin-label probe in dimeric GCAP5 (measured by EPR-DEER) defined restraints for calculating the dimer structure by molecular docking. The GCAP5 dimer possesses intermolecular hydrophobic contacts involving the side chain atoms of H18, Y21, M25, F72, V76, and W93, as well as an intermolecular salt bridge between R22 and D71. The structural model of the GCAP5 dimer was validated by mutations (H18E/Y21E, H18A/Y21A, R22D, R22A, M25E, D71R, F72E, and V76E) at the dimer interface that disrupt dimerization of GCAP5 and affect the activation of RetGC. We propose that GCAP5 dimerization may play a role in the Fe2+-dependent regulation of cyclase activity in zebrafish photoreceptors
    corecore