478 research outputs found

    Structure, Stability, and (Non)Reactivity of the Low-Index Surfaces of Crystalline B2O3βˆ’I

    Get PDF
    Diboron trioxide (B2O 3) assumes critical importance as an effective oxidation inhibitor in prominent chemical applications. For instance, it has been extensively used in electrolysis and ceramic/glass technology. Results are presented of accurate quantum mechanical calculations using the PW1PW hybrid HF/DFT functional of four low- index surfaces of the low-pressure phase of B2O : (101), (100), (011), and (001). Bond lengths, bond angles, and net Mulliken charges of the surface atoms are analyzed in detail. Total and projected density of states as well as surface energies are discussed. The occurrence of tetrahedral BO 4 units on the lowest energy structures of two of these surfaces has been demonstrated for the first time. The corresponding surface orientations incur larger energies in reference to the two orientations featuring only BO3 units. All of the four investigated lowest energy structures have no dangling bonds, which reasonably relates to the experimentally observed low reactivity of this compound. Findings in this paper pave the way for potential interest in the perspective of future studies on the surfaces of amorphous B2O3, as well as on the hydroxylation of both crystalline and amorphous B2O3

    Effects of Radiation sterilization Dose on the Molecular Weight and Gelling Properties of Commercial Alginate Samples

    Get PDF
    From Frontiers via Jisc Publications RouterHistory: collection 2021, received 2021-08-20, accepted 2021-11-12, epub 2021-12-20Publication status: PublishedTo estimate the molecular weight (Mw) and gelling properties, a total of 26 alginate samples consisting of control (n = 13) and 15 kGy Ξ³-irradiated (n = 13) samples were characterized through viscometric and gel permeation chromatography (GPC-MALLS) methods. Based on the observations, a remarkable decrease in the intrinsic viscosity of all samples of alginates was evident due to the effects of radiation, with a linear relationship between viscosity and concentration in 0.01 M NaCl solution. The correlation among the Mw, percentage mass recovery, radii of gyration (Rz/Rg), and percentage reduction of Mw assessed by GPC was significant. The Mw decreased dramatically (from 3.1 Γ— 105 to 0.49 Γ— 105 mole/g in sample no. 12) by the effect of radiation with momentous relation to the % reduction of the molecular weight. The highest molecular weight reduction (84%), which is the most sensitive to Ξ³-radiation, and the average reduction rate was β‰₯50%. The mass recovery was 100% obtained from samples no. 1,3,4,5,7,12, and 13, while the rest of the samples’ recovery rate was significantly higher. The reduction rate of mass molecular weight (Mw) is higher than the average molecular weight (Mv), but they showed a sensitivity towards radiation, consequently their performance are different from each other. The stability test was performed as a critical behaviour in the control, recurrently same as in the irradiated samples. Thus, the sterilization dose of 15 kGy for the Mw distribution, and subsequently for the characterization, was significantly effective

    A baseline survey of potentially toxic elements in the soil of north-west Syria following a decade of conflict

    Get PDF
    We present the first region-wide chemical survey of soils in NW Syria following more than a decade of ongoing conflict. We sampled topsoil at 66 sites, typically located in marginal agricultural (orchards, arable) or peri-urban settings, grouped around 21 localities covering the whole area of NW Syria currently under Syrian Opposition control. Samples were analysed in the UK using ICP-MS and ICP-OES. Topsoil total concentrations of heavy metals are broadly consistent with pre-war data from Aleppo and recent data from nearby Turkey. Principal Components Analysis (PCA) of associations among the sampling sites identified three groupings. Ni (133.30 Β± 72.12 mg/kg) and Cr (122.14 Β± 52.25 mg/kg) exist in all samples at levels in excess of typical European guideline thresholds for agricultural soil. Observed Cd (0.57 Β± 0.93 mg/kg), Co (23.07 Β± 18.48 mg/kg) and As (6.65 Β± 4.51 mg/kg) concentrations are up to three times comparable values from nearby agricultural regions in southern Turkey. Maximum observed values for Cd, As, and Co, which exceed EU thresholds, are concentrated in a corridor around Sarmada to the west of Aleppo which has seen some of the most intense conflict-related impacts. Cu (28.33 Β± 17.11 mg/kg), Pb (15.65 Β± 10.85 mg/kg) and Zn (73.64 Β± 40.15 mg/kg) also observe maxima in the Sarmada corridor, but show a more even distribution across the region, widely at values above comparable regional values for agriculture but below EU threshold concentrations. We interpret the occurrence of Ni-Cr as consistent with intensive agriculture using wastewater-contaminated irrigation and fertilisers. Cd-As-Co and Cu-Pb-Zn are likely anthropogenic and reflect intense pressures of conflict, informal settlement, unregulated industry and untreated wastewater irrigation on a historically agricultural region. The sampling method was designed to capture regional variations from a minimal dataset and it is likely that local topsoil concentrations at specific points of impact (proximal to locations of shelling, industry, effluent release or population) will be considerably higher than those reported here. This study establishes an important baseline reference for further targeted studies to identify and mitigate specific pollution hazards in this region of ongoing, extreme humanitarian and ecological threat

    Specific Recognition of p53 Tetramers by Peptides Derived from p53 Interacting Proteins

    Get PDF
    Oligomerization plays a major role in regulating the activity of many proteins, and in modulating their interactions. p53 is a homotetrameric transcription factor that has a pivotal role in tumor suppression. Its tetramerization domain is contained within its C-terminal domain, which is a site for numerous protein-protein interactions. Those can either depend on or regulate p53 oligomerization. Here we screened an array of peptides derived from proteins known to bind the tetrameric p53 C-terminal domain (p53CTD) and identified ten binding peptides. We quantitatively characterized their binding to p53CTD using fluorescence anisotropy. The peptides bound tetrameric p53CTD with micromolar affinities. Despite the high charge of the binding peptides, electrostatics contributed only mildly to the interactions. NMR studies indicated that the peptides bound p53CTD at defined sites. The most significant chemical shift deviations were observed for the peptides WS100B(81–92), which bound directly to the p53 tetramerization domain, and PKCΞ±(281–295), which stabilized p53CTD in circular dichroism thermal denaturation studies. Using analytical ultracentrifugation, we found that several of the peptides bound preferentially to p53 tetramers. Our results indicate that the protein-protein interactions of p53 are dependent on the oligomerization state of p53. We conclude that peptides may be used to regulate the oligomerization of p53

    Migrant health in Italy: a better health status difficult to maintain-country of origin and assimilation effects studied from the Italian risk factor surveillance data

    Get PDF
    Many studies on migrant health have focused on aspects of morbidity and mortality, but very few approach the relevant issues of migrants' health considering behavioral risk factors. Previous studies have often been limited methodologically because of sample size or lack of information on migrant country of origin. Information about risk factors is fundamental to direct any intervention, particularly with regard to non-communicable diseases that are leading causes of death and disease. Thus, the main focus of our analysis is the influence of country of origin and the assimilation process

    Advances in MRI-Based Detection of Cerebrovascular Changes after Experimental Traumatic Brain Injury

    Get PDF
    Traumatic brain injury is a heterogeneous and multifaceted neurological disorder that involves diverse pathophysiological pathways and mechanisms. Thorough characterization and monitoring of the brain’s status after neurotrauma is therefore highly complicated. Magnetic resonance imaging (MRI) provides a versatile tool for in vivo spatiotemporal assessment of various aspects of central nervous system injury, such as edema formation, perfusion disturbances and structural tissue damage. Moreover, recent advances in MRI methods that make use of contrast agents have opened up additional opportunities for measurement of events at the level of the cerebrovasculature, such as blood–brain barrier permeability, leukocyte infiltration, cell adhesion molecule upregulation and vascular remodeling. It is becoming increasingly clear that these cerebrovascular alterations play a significant role in the progression of post-traumatic brain injury as well as in the process of post-traumatic brain repair. Application of advanced multiparametric MRI strategies in experimental, preclinical studies may significantly aid in the elucidation of pathomechanisms, monitoring of treatment effects, and identification of predictive markers after traumatic brain injury

    Using high angular resolution diffusion imaging data to discriminate cortical regions

    Get PDF
    Brodmann's 100-year-old summary map has been widely used for cortical localization in neuroscience. There is a pressing need to update this map using non-invasive, high-resolution and reproducible data, in a way that captures individual variability. We demonstrate here that standard HARDI data has sufficiently diverse directional variation among grey matter regions to inform parcellation into distinct functional regions, and that this variation is reproducible across scans. This characterization of the signal variation as non-random and reproducible is the critical condition for successful cortical parcellation using HARDI data. This paper is a first step towards an individual cortex-wide map of grey matter microstructure, The gray/white matter and pial boundaries were identified on the high-resolution structural MRI images. Two HARDI data sets were collected from each individual and aligned with the corresponding structural image. At each vertex point on the surface tessellation, the diffusion-weighted signal was extracted from each image in the HARDI data set at a point, half way between gray/white matter and pial boundaries. We then derived several features of the HARDI profile with respect to the local cortical normal direction, as well as several fully orientationally invariant features. These features were taken as a fingerprint of the underlying grey matter tissue, and used to distinguish separate cortical areas. A support-vector machine classifier, trained on three distinct areas in repeat 1 achieved 80-82% correct classification of the same three areas in the unseen data from repeat 2 in three volunteers. Though gray matter anisotropy has been mostly overlooked hitherto, this approach may eventually form the foundation of a new cortical parcellation method in living humans. Our approach allows for further studies on the consistency of HARDI based parcellation across subjects and comparison with independent microstructural measures such as ex-vivo histology

    Reward-Related Dorsal Striatal Activity Differences between Former and Current Cocaine Dependent Individuals during an Interactive Competitive Game

    Get PDF
    Cocaine addiction is characterized by impulsivity, impaired social relationships, and abnormal mesocorticolimbic reward processing, but their interrelationships relative to stages of cocaine addiction are unclear. We assessed blood-oxygenation-level dependent (BOLD) signal in ventral and dorsal striatum during functional magnetic resonance imaging (fMRI) in current (CCD; nβ€Š=β€Š30) and former (FCD; nβ€Š=β€Š28) cocaine dependent subjects as well as healthy control (HC; nβ€Š=β€Š31) subjects while playing an interactive competitive Domino game involving risk-taking and reward/punishment processing. Out-of-scanner impulsivity-related measures were also collected. Although both FCD and CCD subjects scored significantly higher on impulsivity-related measures than did HC subjects, only FCD subjects had differences in striatal activation, specifically showing hypoactivation during their response to gains versus losses in right dorsal caudate, a brain region linked to habituation, cocaine craving and addiction maintenance. Right caudate activity in FCD subjects also correlated negatively with impulsivity-related measures of self-reported compulsivity and sensitivity to reward. These findings suggest that remitted cocaine dependence is associated with striatal dysfunction during social reward processing in a manner linked to compulsivity and reward sensitivity measures. Future research should investigate the extent to which such differences might reflect underlying vulnerabilities linked to cocaine-using propensities (e.g., relapses)

    Peptides Derived from HIV-1 Integrase that Bind Rev Stimulate Viral Genome Integration

    Get PDF
    The human immunodeficiency virus type 1 (HIV-1) integrase protein (IN), catalyzes the integration of viral DNA into the host cell genome. IN catalyzes the first step of the integration process, namely the 3β€²-end processing in which IN removes a pGT dinucleotide from the 3β€² end of each viral long terminal repeat (LTR). Following nuclear import of the viral preintegration complex, the host chromosomal DNA becomes accessible to the viral cDNA and the second step of the integration process, namely the strand-transfer step takes place. This ordered sequence of events, centered on integration, is mandatory for HIV replication. assay system, we show that INr-1 and INr-2 are able to abrogate the inhibitory effects exerted by Rev and Rev-derived peptides on integrase activity. Both INr-1 and INr-2 were found to be cell-permeable and nontoxic, allowing a study of their effect in HIV-1-infected cultured cells. Interestingly, both INr peptides stimulated virus infectivity as estimated by production of the viral P24 protein, as well as by determination of the appearance of newly formed virus particles. Furthermore, kinetics studies revealed that the cell-permeable INr peptides enhance the integration process, as was indeed confirmed by direct determination of viral DNA integration by real-time PCR.The results of the present study raise the possibility that in HIV-infected cells, the Rev protein may be involved in the integration of proviral DNA by controlling/regulating the activity of the integrase. Release from such inhibition leads to stimulation of IN activity and multiple viral DNA integration events
    • …
    corecore