512 research outputs found

    The viscosity of R32 and R125 at saturation

    Get PDF
    This paper reports new measurements of the viscosity of R32 and R125, in both the liquid and the vapor phase, over the temperature range 220 to 343 K near the saturation line. The measurements in both liquid and vapor phases have been carried out with a vibrating-wire viscometer calibrated with respect to standard reference values of viscosity. It is estimated that the uncertainty of the present viscosity data is one of 0.5-1%, being limited partly by the accuracy of the available density data. The experimental data have been represented by polynomial functions of temperature for the purposes of interpolation

    Reference Correlation of the Viscosity of Squalane from 273 to 373 K at 0.1 MPa

    Get PDF
    International audienceThe paper presents a new reference correlation for the viscosity of squalane at 0.1 MPa. The correlation should be valuable as it is the first to cover a moderately high viscosity range, from 3 to 118 mPa s. It is based on new viscosity measurements carried out for this work, as well as other critically evaluated experimental viscosity data from the literature. The correlation is valid from 273 to 373 K at 0.1 MPa. The average absolute percentage deviation of the fit is 0.67, and the expanded uncertainty, with a coverage factor k = 2, is 1.5%

    Thermal conductivity measurement of liquids in a microfluidic device

    Get PDF
    A new microfluidic-based approach to measuring liquid thermal conductivity is developed to address the requirement in many practical applications for measurements using small (microlitre) sample size and integration into a compact device. The approach also gives the possibility of high-throughput testing. A resistance heater and temperature sensor are incorporated into a glass microfluidic chip to allow transmission and detection of a planar thermal wave crossing a thin layer of the sample. The device is designed so that heat transfer is locally one-dimensional during a short initial time period. This allows the detected temperature transient to be separated into two distinct components: a short-time, purely one-dimensional part from which sample thermal conductivity can be determined and a remaining long-time part containing the effects of three-dimensionality and of the finite size of surrounding thermal reservoirs. Identification of the one-dimensional component yields a steady temperature difference from which sample thermal conductivity can be determined. Calibration is required to give correct representation of changing heater resistance, system layer thicknesses and solid material thermal conductivities with temperature. In this preliminary study, methanol/water mixtures are measured at atmospheric pressure over the temperature range 30–50°C. The results show that the device has produced a measurement accuracy of within 2.5% over the range of thermal conductivity and temperature of the tests. A relation between measurement uncertainty and the geometric and thermal properties of the system is derived and this is used to identify ways that error could be further reduced

    Communications Biophysics

    Get PDF
    COntains reports on six research projects.National Institutes of Health (Grant 2 P01 MH-04737-06)National Institutes of Health (Grant 5 ROl NB-05462-02)Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DA 36-039-AMC-03200(E)National Science Foundation (Grant GK-835)National Aeronautics and Space Administration (Grant NsG-496

    Electrophysiological evaluation of Cystic Fibrosis Conductance Transmembrane Regulator (CFTR) expression in human monocytes.

    Get PDF
    BACKGROUND: Cystic fibrosis is caused by mutations of CFTR gene, a protein kinase A-activated anion channel, and is associated to a persistent and excessive chronic lung inflammation, suggesting functional alterations of immune cells. Leukocytes express detectable levels of CFTR but the molecule has not been fully characterized in these cells.METHODS: Freshly isolated monocytes from healthy individuals and CF patients were assessed by protein expression, single cell electrophysiological and membrane depolarization assays.RESULTS: We recorded chloride currents by patch clamp in healthy monocytes, after the administration of a CFTR stimulus. Currents were sensitive to a specific blocker of the CFTR channel, CFTRinh-172 and were absent in CF monocytes. Next, we evaluated the effects of ex vivo exposure of monocytes from cystic fibrosis patients carrying the F508del mutation to a chemical corrector, Vertex-325. We found an increase in CFTR expression by confocal microscopy and a recovery of CFTR function by both patch clamp and single cell fluorescence analysis.CONCLUSIONS: We confirm the expression of functional CFTR in human monocytes and demonstrate that blood monocytes can represent an adequate source of primary cells to assess new therapies and define diagnosis of CF.GENERAL SIGNIFICANCE: Tests to evaluate CFTR functional abnormalities in CF disease might greatly benefit from the availability of a convenient source of primary cells. This electrophysiological study promotes the use of monocytes as a minimally invasive tool to study and monitor CFTR function in individual patients

    Enhancing surface heat transfer by carbon nanofins: towards an alternative to nanofluids?

    Get PDF
    Background: Nanofluids are suspensions of nanoparticles and fibers which have recently attracted much attention because of their superior thermal properties. Nevertheless, it was proven that, due to modest dispersion of nanoparticles, such high expectations often remain unmet. In this article, by introducing the notion of nanofin, a possible solution is envisioned, where nanostructures with high aspect-ratio are sparsely attached to a solid surface (to avoid a significant disturbance on the fluid dynamic structures), and act as efficient thermal bridges within the boundary layer. As a result, particles are only needed in a small region of the fluid, while dispersion can be controlled in advance through design and manufacturing processes. Results: Toward the end of implementing the above idea, we focus on single carbon nanotubes to enhance heat transfer between a surface and a fluid in contact with it. First, we investigate the thermal conductivity of the latter nanostructures by means of classical non-equilibrium molecular dynamics simulations. Next, thermal conductance at the interface between a single wall carbon nanotube (nanofin) and water molecules is assessed by means of both steady-state and transient numerical experiments. Conclusions: Numerical evidences suggest a pretty favorable thermal boundary conductance (order of 107 W·m-2·K-1) which makes carbon nanotubes potential candidates for constructing nanofinned surface

    Challenging the diagnosis of Cystic Fibrosis in a patient carrying the 186-8T/C allelic variant in the CF Transmembrane Conductance Regulator gene

    Get PDF
    BACKGROUND: This report describe for the first time a clinical case with a CFTR allelic variant 186-8T/C (c.54-8 T/C) in intron 1 of CFTR and underline the importance of applying a combination of genetic and functional tests to establish or exclude a diagnosis of Cystic Fibrosis. In this case the diagnostic algorithm proposed for CF has been successfully applied at our Center and previous CF diagnosis assigned in a different Center was not confirmed.Case report: A 38 year-old Italian woman had been treated as affected by CF since 2010, following diagnosis based on sweat tests (reported values of 73 and 57 mEq/L) and a clinical history consistent with CF. No mutations were identified by first level of genetic analysis. Afterwards the patient referred to our center for assessing the relevance of these findings. The genetic variant 186-8T/C (c.54-8 T/C) in intron 1 of the CFTR gene was detected by sequencing. Low-level interstitial-alveolar infiltration was recorded by high-resolution computerized tomography. Lung function was normal and sputum and Broncho Alveolar Lavage cultures resulted bacteriologically negative. Sweat chloride levels was re-assessed and resulted with values of 57 and 35 mEq/L, with a borderline range between 40 and 60 mEq/L. Nasal Potential Difference measurements resulted in three reliable measurements consistent with a non-CF phenotype. Differential diagnosis with ciliary dyskinesia was excluded, as was exon 2 skipping of CFTR gene that might have caused a CFTR functional defect. Furthermore, single cell fluorescence analysis in response to cAMP agonists performed in patient's monocytes overlapped those obtained in healthy donors. CONCLUSION: We concluded that this patient was not affected by CF. This case highlights the need for referrals to highly specialized centers and the importance of combined functional and genetic tests in making a correct diagnosis. Moreover, we confirmed a correlation between NPD tracings and cell depolarization in monocytes providing a rationale for proposing the use of leukocytes as a potential support for CF diagnosis
    corecore