24 research outputs found

    Toxicological effects and bioaccumulation of fullerene C60 (FC60) in the marine bivalve Ruditapes philippinarum.

    Get PDF
    Abstract Fullerene C60 (FC60), with its unique physical properties, has been used in many applications in recent decades. The increased likelihood of direct release into the environment has raised interest in understanding the biological effects of FC60 to aquatic organisms. Nowadays, only few studies have analysed FC60 effects and bioaccumulation in marine organisms following in vivo exposure. To provide new data about FC60 toxicity, Ruditapes philippinarum was selected as target species to assess potential adverse effects of the contaminant. Clams were exposed for 1, 3 and 7 days to predicted environmental concentrations of FC60 (1 and 10 μg/L) and cellular and biochemical responses were evaluated in clams' gills, digestive gland and haemolymph. The FC60 content in gills and digestive gland was determined in all experimental conditions after 7 days of exposure. Results showed an increase in oxidative stress. In particular, a significant modulation in antioxidant enzyme activities, and changes in glutathione S-transferase activity were observed in gills. Moreover, damage to lipids and proteins was detected in FC60-treated (10 µg/L) clams. In digestive gland, slighter variations in antioxidant enzyme activities and damage to molecules were detected. CAT activity was significantly affected throughout the exposure, whereas damage to lipids was evident only at the end of exposure. FC60 accumulation was revealed in both gills and digestive gland, with values up to twelve-fold higher in the latter. Interestingly, haemolymph parameters were slightly affected by FC60 compared to the other tissues investigated. Indeed, only Single Cell Gel Electrophoresis and Neutral Red uptake assays showed increased values in FC60-exposed clams. Moreover, volume and diameter of haemocytes, haemocyte proliferation, and micronucleus assay highlighted significant variations in treated clams, but only in the first phases of exposure, and no changes were detected after 7 days. Our results suggested clam gills as the target tissue for FC60 toxicity under the exposure conditions tested: the high damage detected to lipids and proteins could contribute to long-term problems for the organism

    A multibiomarker approach in clams (Ruditapes philippinarum) for a toxicological evaluation of dredged sediments

    Get PDF
    The Lagoon of Venice is often dredged for channel maintenance. To avoid harmful consequences to the ecosystem, a proper disposal of bottom sediments requires a preliminary evaluation of its potential toxicity before excavation. Here we evaluated the effects of polluted sediments on clams (Ruditapes philippinarum) using a multibiomarker approach. Bivalves were exposed for 3 and 14 days to five sediment samples collected along a navigation canal between Venice historical centre and the industrial area of Porto Marghera. Immunological, antioxidant, detoxification, and neurotoxicity biomarkers were analysed in haemolymph, gill, and digestive gland. As a control, sediment collected far from pollution sources was used. Two experiments were performed to assess potential seasonal/gametogenic influence in clam sensitivity. A different response of clam biomarkers was observed during the two experiments and among sampling sites. Clams’ digestive gland resulted to be the most sensitive tissue analysed showing significant differences among sites in all biomarkers analysed. Greater differences were present due to seasonality rather than exposure. The concentrations of metals and organic pollutants increased from the city centre to the industrial area, highlighting the influence that industrial activities had on the lagoon ecosystem. However, bioaccumulation in clams did not follow the same clear pattern, suggesting low bioavailability of compounds due to relatively high organic matter content. Biomarkers modulation was mainly driven by metals, both present in sediments and bioaccumulated. In comparison, effects of organic pollutants on the biomarkers tested were negligible. Other sources of contamination not investigated (e.g. pesticides) were suggested by neurotoxicity biomarkers alteration

    Contaminants from dredged sediments alter the transcriptome of Manila clam and induce shifts in microbiota composition

    Get PDF
    Background The reuse of dredged sediments in ports and lagoons is a big issue as it should not affect the quality and the equilibrium of ecosystems. In the lagoon of Venice, sediment management is of crucial importance as sediments are often utilized to built-up structures necessary to limit erosion. However, the impact of sediment reuse on organisms inhabiting this delicate area is poorly known. The Manila clam is a filter-feeding species of high economic and ecological value for the Venice lagoon experiencing a drastic decline in the last decades. In order to define the molecular mechanisms behind sediment toxicity, we exposed clams to sediments sampled from different sites within one of the Venice lagoon navigable canals close to the industrial area. Moreover, we investigated the impacts of dredged sediments on clam’s microbial communities. Results Concentrations of the trace elements and organic chemicals showed increasing concentrations from the city of Venice to sites close to the industrial area of Porto Marghera, where PCDD/Fs and PCBs concentrations were up to 120 times higher than the southern lagoon. While bioaccumulation of organic contaminants of industrial origin reflected sediments’ chemical concentrations, metal bioaccumulation was not consistent with metal concentrations measured in sediments probably due to the activation of ABC transporters. At the transcriptional level, we found a persistent activation of the mTORC1 signalling pathway, which is central in the coordination of cellular responses to chemical stress. Microbiota characterization showed the over-representation of potential opportunistic pathogens following exposure to the most contaminated sediments, leading to host immune response activation. Despite the limited acquisition of new microbial species from sediments, the latter play an important role in shaping Manila clam microbial communities. Conclusions Sediment management in the Venice lagoon will increase in the next years to maintain and create new canals as well as to allow the operation of the new mobile gates at the three Venice lagoon inlets. Our data reveal important transcriptional and microbial changes of Manila clams after exposure to sediments, therefore reuse of dredged sediments represents a potential risk for the conservation of this species and possibly for other organisms inhabiting the Venice lagoon

    Maternal and food microbial sources shape the infant microbiome of a rural Ethiopian population

    Get PDF
    The human microbiome seeding starts at birth, when pioneer microbes are acquired mainly from the mother. Mode of delivery, antibiotic prophylaxis, and feeding method have been studied as modulators of mother-to-infant microbiome transmission, but other key influencing factors like modern westernized lifestyles with high hygienization, high-calorie diets, and urban settings, compared with non-westernized lifestyles have not been investigated yet. In this study, we explored the mother-infant sharing of characterized and uncharacterized microbiome members via strain-resolved metagenomics in a cohort of Ethiopian mothers and infants, and we compared them with four other cohorts with different lifestyles. The westernized and non-westernized newborns’ microbiomes composition overlapped during the first months of life more than later in life, likely reflecting similar initial breast-milk-based diets. Ethiopian and other non-westernized infants shared a smaller fraction of the microbiome with their mothers than did most westernized populations, despite showing a higher microbiome diversity, and uncharacterized species represented a substantial fraction of those shared in the Ethiopian cohort. Moreover, we identified uncharacterized species belonging to the Selenomonadaceae and Prevotellaceae families specifically present and shared only in the Ethiopian cohort, and we showed that a locally produced fermented food, injera, can contribute to the higher diversity observed in the Ethiopian infants’ gut with bacteria that are not part of the human microbiome but are acquired through fermented food consumption. Taken together, these findings highlight the fact that lifestyle can impact the gut microbiome composition not only through differences in diet, drug consumption, and environmental factors but also through its effect on mother-infant strain-sharing patterns

    Effects of Glyphosate-Based and Derived Products on Sea Urchin Larval Development

    No full text
    Despite the widespread use of herbicide glyphosate in cultivation, its extensive runoff into rivers and to coastal areas, and the persistence of this chemical and its main degradation product (aminomethylphosphonic acid, AMPA) in the environment, there is still little information on the potential negative effects of glyphosate, its commercial formulation Roundup® and AMPA on marine species. This study was conducted with the aim of providing a comparative evaluation of the effects of glyphosate-based and its derived chemicals on the larval development of the sea urchin Paracentrotus lividus, thus providing new data to describe the potential ecotoxicity of these contaminants. In particular, the effects on larval development, growth and metabolism were assessed during 48 h of exposure from the time of egg fertilization. The results confirm that AMPA and its parent compound, glyphosate have similar toxicity, as observed in other marine invertebrates. However, interestingly, the Roundup® formulation seemed to be less toxic than the glyphosate alone

    Behavioural Responses to Ultrasound Antifouling Systems by Adult Solitary Ascidians

    No full text
    Ultrasonic antifouling devices are installed globally on a variety of vessel types and are marketed as an environmentally friendly method for biofouling control. The aim of this study was to examine the effects of ultrasound on adults of three species of common solitary ascidians (Ciona intestinalis, Ascidiella aspersa and Styela plicata). After a brief (10 s) exposure to two ultrasound frequencies (30 and 35 kHz), alterations in the frequency of siphon closing events and the length of time the siphons remained closed/open were observed. The results revealed that ascidians are able to perceive ultrasound, showing frequency-dependent behavioural responses that vary depending on the species and size of individuals involving both tactile receptors and an acoustic system homologous to the vertebrate inner ear. Continuous (5 h) 30 kHz exposure caused other types of responses, the most interesting of which was the long-term opening of the oral siphon, indicating a lack of reactivity to mechanical stimuli. This effect suggests a stress condition that could lead to increased vulnerability to predators and filter-feeding impairment. Therefore, knowledge of the acoustic sensitivity of sessile marine species appears to be essential for better understanding the potential effects of noise pollution on marine ecosystems

    Different ecological histories of sea urchins acclimated to reduced pH influence offspring response to multiple stressors.

    No full text
    End-of-the-century predictions on carbon dioxide (CO2) driven ocean acidification and the continuous leakage of pesticides from inland to coastal areas are of concern for potential negative effects on marine species’ early life stages which are the most vulnerable to environmental changes. Variations in seawater chemistry related to human activities may interfere with the normal development from embryo to juvenile/adult stage. However, transgenerational studies suggest that the parental generation can influence the offspring phenotype, and thus their performances, based on the environment experienced. Here we compared the transgenerational responses to a multiple stressor scenario in sea urchins (Paracentrotus lividus) that experienced different environments since their settlement: i.e., animals from a highly variable environment, such as the Venice lagoon, versus animals from a coastal area with prevailing oligotrophic conditions in the Northern Adriatic Sea. After long-term maintenance (2 and 6 months) of adult sea urchins at natural and 0.4 units reduced pH, the F1 generations were obtained. Embryos were reared under four experimental conditions: natural and 0.4 pH both in the absence and in the presence of an emerging contaminants’ mixture (glyphosate and aminomethylphosphonic acid at environmentally relevant concentrations, 100 μg/L). A significant detrimental effect of both the parental and the filial pH was highlighted, affecting embryo development and growth. Nonetheless, sea urchins from both sites were able to cope with ocean acidification. The 6-months F1 response was better than that of the 2-months F1. Conversely, the F1 response of the sea urchins maintained at natural conditions did not change sensibly after more prolonged parental exposure. An additive but mild negative effect of the mixture was observed, mostly in lagoon offspring. Results suggest that long-term exposure to reduced pH leads to transgenerational acclimation but does not affect susceptibility to the tested pollutants

    Effects of Glyphosate-Based and Derived Products on Sea Urchin Larval Development

    No full text
    Despite the widespread use of herbicide glyphosate in cultivation, its extensive runoff into rivers and to coastal areas, and the persistence of this chemical and its main degradation product (aminomethylphosphonic acid, AMPA) in the environment, there is still little information on the potential negative effects of glyphosate, its commercial formulation Roundup\uae and AMPA on marine species. This study was conducted with the aim of providing a comparative evaluation of the effects of glyphosate-based and its derived chemicals on the larval development of the sea urchin Paracentrotus lividus, thus providing new data to describe the potential ecotoxicity of these contaminants. In particular, the effects on larval development, growth and metabolism were assessed during 48 h of exposure from the time of egg fertilization. The results confirm that AMPA and its parent compound, glyphosate have similar toxicity, as observed in other marine invertebrates. However, interestingly, the Roundup\uae formulation seemed to be less toxic than the glyphosate alone

    Sand Goby : An Ecologically Relevant Species for Behavioural Ecotoxicology

    No full text
    Locomotion-based behavioural endpoints have been suggested as suitable sublethal endpoints for human and environmental hazard assessment, as well as for biomonitoring applications. Larval stages of the sand goby (Pomatoschistus minutus) possess a number of attractive qualities for experimental testing that make it a promising species in behavioural ecotoxicology. Here, we present a study aimed at developing a toolkit for using the sand goby as novel species for ecotoxicological studies and using locomotion as an alternative endpoint in toxicity testing. Exposure to three contaminants (copper (Cu), di-butyl phthalate (DBP) and perfluorooctanoic acid (PFOA) was tested in the early life stages of the sand goby and the locomotion patterns of the larvae were quantified using an automatic tracking system. In a photo-motor test, sand goby larvae displayed substantially higher activity in light than in dark cycles. Furthermore, all tested compounds exerted behavioural alterations, such as hypo- and hyperactivity. Our experimental results show that sand goby larvae produce robust and quantifiable locomotive responses, which could be used within an ecotoxicological context for assessing the behavioural toxicity of environmental pollutants, with particular relevance in the Nordic region. This study thus suggests that sand goby larvae have potential as an environmentally relevant species for behavioural ecotoxicology, and as such offer an alternative to standard model species.This article belongs to the Special Issue Aquatic Organisms for Environmental Monitoring</p

    Effects of Three Widely Used Antibiotics and Their Mixture on the Haemocytes of the Clam Ruditapes philippinarum

    No full text
    Although the presence of pharmaceutical and personal care products in aquatic ecosystems is well documented, little information is available about their sublethal effects, on aquatic invertebrates. From an ecotoxicological point of view, the use of in vitro approaches has been recommended as a tool to assess adverse effects and to understand the mechanisms of action of chemicals at the cellular level. In the present in vitro study, the effects of Amoxicillin (AMX), Trimethoprim (TMP) and Ciprofloxacin (CIP) (1 μg/L, each) were tested alone and—for the first time—as a mixture (MIX) on haemocytes of the clam Ruditapes philippinarum. After the exposure, a battery of cellular parameters was evaluated, such as haemocyte viability, lysosomal membrane stability, superoxide anion production, acid phosphatase activity, the frequency of micronuclei and chromosomal aberrations. The results demonstrated that AMX, TMP, CIP and MIX affected lysosomal membrane stability, as well as superoxide anion and acid phosphatase production, and promoted chromosomal aberrations. This study highlighted that Manila clam haemocytes are a sensitive cell model to assess the effects of exposure to pharmaceutical products on non-target species. Our study demonstrated that the effects of pharmaceutical mixtures on marine species should be experimentally evaluated because they are not predictable from single exposures as the compounds can interact in different ways on the various biological endpoints considered
    corecore