181 research outputs found

    Indigenous Representation in the Media and the Importance of Personal Narrative

    Get PDF
    Despite globalization, indigenous representation in the media continues to be unequal. Without personal narratives and self-representation in their stories, indigenous people continue to be negatively stereotyped in pop culture, film, television and news coverage

    Growth rates of nucleation mode particles in HyytiĂ€lĂ€ during 2003−2009: variation with particle size, season, data analysis method and ambient conditions

    Get PDF
    The condensational growth rate of aerosol particles formed in atmospheric new particle formation events is one of the most important factors influencing the lifetime of these particles and their ability to become climatically relevant. Diameter growth rates (GR) of nucleation mode particles were studied based on almost 7 yr of data measured during the years 2003–2009 at a boreal forest measurement station SMEAR II in HyytiĂ€lĂ€, Finland. The particle growth rates were estimated using particle size distributions measured with a Differential Mobility Particle Sizer (DMPS), a Balanced Scanning Mobility Analyzer (BSMA) and an Air Ion Spectrometer (AIS). Two GR analysis methods were tested. The particle growth rates were also compared to an extensive set of ambient meteorological parameters and trace gas concentrations to investigate the processes/constituents limiting the aerosol growth. The median growth rates of particles in the nucleation mode size ranges with diameters of 1.5–3 nm, 3–7 nm and 7–20 nm were 1.9 nm h<sup>−1</sup>, 3.8 nm h<sup>−1</sup>, and 4.3 nm h<sup>−1</sup>, respectively. The median relative uncertainties in the growth rates due to the size distribution instrumentation in these size ranges were 25%, 19%, and 8%, respectively. For the smallest particles (1.5–3 nm) the AIS data yielded on average higher growth rate values than the BSMA data, and higher growth rates were obtained from positively charged size distributions as compared with negatively charged particles. For particles larger than 3 nm in diameter no such systematic differences were found. For these particles the uncertainty in the growth rate related to the analysis method, with relative uncertainty of 16%, was similar to that related to the instruments. The growth rates of 7–20 nm particles showed positive correlation with monoterpene concentrations and their oxidation rate by ozone. The oxidation rate by OH did not show a connection with GR. Our results indicate that the growth of nucleation mode particles in HyytiĂ€lĂ€ is mainly limited by the concentrations of organic precursors

    Investigation of new particle formation mechanisms and aerosol processes at Marambio Station, Antarctic Peninsula

    Get PDF
    Understanding chemical processes leading to the formation of atmospheric aerosol particles is crucial to improve our capabilities in predicting the future climate. However, those mechanisms are still inadequately characterized, especially in polar regions. In this study, we report observations of neutral and charged aerosol precursor molecules and chemical cluster composition (qualitatively and quantitatively), as well as air ions and aerosol particle number concentrations and size distributions from the Marambio research station (64 degrees 15' S, 56 degrees 38' W), located north of the Antarctic Peninsula. We conducted measurements during the austral summer, between 15 January and 25 February 2018. The scope of this study is to characterize new particle formation (NPF) event parameters and connect our observations of gas-phase compounds with the formation of secondary aerosols to resolve the nucleation mechanisms at the molecular scale. NPF occurred on 40% of measurement days. All NPF events were observed during days with high solar radiation, mostly with above-freezing temperatures and with low relative humidity. The averaged formation rate for 3 nm particles (J(3)) was 0.686 cm(-3) s(-1), and the average particle growth rate (GR(3.8-12 nm)) was 4.2 nm h(-1). Analysis of neutral aerosol precursor molecules showed measurable concentrations of iodic acid (IA), sulfuric acid (SA), and methane sulfonic acid (MSA) throughout the entire measurement period with significant increase in MSA and SA concentrations during NPF events. We highlight SA as a key contributor to NPF processes, while IA and MSA likely only contribute to particle growth. Mechanistically, anion clusters containing ammonia and/or dimethylamine (DMA) and SA were identified, suggesting significant concentration of ammonia and DMA as well. Those species are likely contributing to NPF events since SA alone is not sufficient to explain observed nucleation rates. Here, we provide evidence of the marine origin of the measured chemical precursors and discuss their potential contribution to the aerosol phase.Peer reviewe

    SALSA - a sectional aerosol module for large scale applications

    Get PDF
    "The sectional aerosol module SALSA is introduced. The model has been designed to be implemented in large scale climate models, which require both accuracy and computational efficiency. We have used multiple methods to reduce the computational burden of different aerosol processes to optimize the model performance without losing physical features relevant to problematics of climate importance. The optimizations include limiting the chemical compounds and physical processes available in different size sections of aerosol particles; division of the size distribution into size sections using size sections of variable width depending on the sensitivity of microphysical processing to the particles sizes; the total amount of size sections to describe the size distribution is kept to the minimum; furthermore, only the relevant microphysical processes affecting each size section are calculated. The ability of the module to describe different microphysical processes was evaluated against explicit microphysical models and several microphysical models used in air quality models. The results from the current module show good consistency when compared to more explicit models. Also, the module was used to simulate a new particle formation event typical in highly polluted conditions with comparable results to more explicit model setup.""The sectional aerosol module SALSA is introduced. The model has been designed to be implemented in large scale climate models, which require both accuracy and computational efficiency. We have used multiple methods to reduce the computational burden of different aerosol processes to optimize the model performance without losing physical features relevant to problematics of climate importance. The optimizations include limiting the chemical compounds and physical processes available in different size sections of aerosol particles; division of the size distribution into size sections using size sections of variable width depending on the sensitivity of microphysical processing to the particles sizes; the total amount of size sections to describe the size distribution is kept to the minimum; furthermore, only the relevant microphysical processes affecting each size section are calculated. The ability of the module to describe different microphysical processes was evaluated against explicit microphysical models and several microphysical models used in air quality models. The results from the current module show good consistency when compared to more explicit models. Also, the module was used to simulate a new particle formation event typical in highly polluted conditions with comparable results to more explicit model setup.""The sectional aerosol module SALSA is introduced. The model has been designed to be implemented in large scale climate models, which require both accuracy and computational efficiency. We have used multiple methods to reduce the computational burden of different aerosol processes to optimize the model performance without losing physical features relevant to problematics of climate importance. The optimizations include limiting the chemical compounds and physical processes available in different size sections of aerosol particles; division of the size distribution into size sections using size sections of variable width depending on the sensitivity of microphysical processing to the particles sizes; the total amount of size sections to describe the size distribution is kept to the minimum; furthermore, only the relevant microphysical processes affecting each size section are calculated. The ability of the module to describe different microphysical processes was evaluated against explicit microphysical models and several microphysical models used in air quality models. The results from the current module show good consistency when compared to more explicit models. Also, the module was used to simulate a new particle formation event typical in highly polluted conditions with comparable results to more explicit model setup."Peer reviewe

    Intercomparison of air ion spectrometers: An evaluation of results in varying conditions

    Get PDF
    We evaluated 11 air ion spectrometers from Airel Ltd. after they had spent one year in field measurements as a part of the EUCAARI project: 5 Air Ion Spectrometers (AIS), 5 Neutral cluster and Air Ion Spectrometers (NAIS) and one Airborne NAIS (ANAIS). This is the first time that an ANAIS is evaluated and compared so extensively. The ion spectrometers' mobility and concentration accuracy was evaluated. Their measurements of ambient air were compared between themselves and to reference instruments: a Differential Mobility Particle Sizer (DMPS), a Balanced Scanning Mobility Analyzer (BSMA), and an Ion-DMPS. We report on the simultaneous measurement of a new particle formation (NPF) event by all 11 instruments and the 3 reference instruments. To our knowledge, it is the first time that the size distribution of ions and particles is measured by so many ion spectrometers during a NPF event. The new particle formation rates (~0.2 cm−3 s−1 for ions and ~2 cm−3 s−1 for particles) and growth rates (~25 nm h−1 in the 3–7 nm size range) were calculated for all the instruments. The NAISs and the ANAIS gave higher concentrations and formation rates than the AISs. For example, the AISs agreed with the BSMA within 11 % and 28 % for negative and positive ion concentration respectively, whereas the NAISs agreed within 23 % and 29 %. Finally, based on the results presented here, we give guidelines for data evaluation, when data from different individual ion spectrometers are compared

    Secondary new particle formation in Northern Finland Pallas site between the years 2000 and 2010

    Get PDF
    Secondary new particle formation affects atmospheric aerosol and cloud droplet numbers and thereby, the aerosol effects on climate. In this paper, the frequency of nucleation events and the associated particle formation and growth rates, along with their seasonal variation, was analysed based on over ten years of aerosol measurements conducted at the Pallas GAW station in northern Finland. The long-term measurements also allowed a detailed examination of factors possibly favouring or suppressing particle formation. Effects of meteorological parameters and air mass properties as well as vapour sources and sinks for particle formation frequency and event parameters were inspected. In addition, the potential of secondary particle formation to increase the concentration of cloud condensation nuclei (CCN) sized particles was examined. Findings from these long-term measurements confirmed previous observations: event frequency peaked in spring and the highest growth rates were observed in summer, affiliated with increased biogenic activity. Events were almost exclusively observed in marine air masses on sunny cloud-free days. A low vapour sink by the background particle population as well as an elevated sulphuric acid concentration were found to favour particle formation. These were also conditions taking place most likely in marine air masses. Inter-annual trend showed a minimum in event frequency in 2003, when also the smallest annual median of growth rate was observed. This gives further evidence of the importance and sensitivity of particle formation for the condensing vapour concentrations at Pallas site. The particle formation was observed to increase CCN&lt;sub&gt;80&lt;/sub&gt; (&gt;80 nm particle number) concentrations especially in summer and autumn seasons when the growth rates were the highest. When the growing mode exceeded the selected 80 nm limit, on average in those cases, 211 ± 114% increase of CCN&lt;sub&gt;80&lt;/sub&gt; concentrations was observed
    • 

    corecore