50 research outputs found

    Characterization of photoreceptor gene regulation and modulation of microglial reactivity in the retina

    Get PDF
    Photoreceptors are highly specialized cells required for phototransduction within the retina and thus crucial for visual perception. Inherited retinal diseases are mainly caused by mutations in photoreceptor-specific genes, the majority of which is regulated by the key transcription factor cone rod homeobox (CRX). Using genome-wide chromatin immunoprecipitation data (CRX ChIP-seq), we have identified a novel sterile alpha motif (SAM) domain containing protein, SAMD7, as a CRX target. SAMD7 is expressed in the mouse retina and pineal gland and localizes to the cytoplasm and nucleus of photoreceptor cells. SAMD7 expression is regulated by CRX, which binds to two specific regions in the promoter and first intron (enhancer) of the SAMD7 gene. Consequently, CRX knock-down leads to a significant decrease of SAMD7 enhancer activity and protein levels in the retina. Functionally, SAMD7 acts as a transcriptional repressor of CRX-mediated photoreceptor gene expression, indicating that mutations in or dysregulation of SAMD7 could lead to disturbed photoreceptor homeostasis and ultimately retinal degeneration. Microglial cells are the resident macrophages of the central nervous system (CNS), including the retina, and play pivotal roles in innate immune responses and regulation of homeostasis in the healthy and degenerating CNS. Reactive microgliosis is a common hallmark of neurodegenerative diseases and chronic pro-inflammatory microglial reactivity contributes to disease progression. We have previously identified activated microglia/macrophage whey acidic protein (AMWAP) as a biomarker for microglial reactivity and counter-regulator of pro-inflammatory response. AMWAP is actively secreted from lipopolysaccharide (LPS)-activated microglia and recombinant AMWAP is taken up by microglial cells in a paracrine fashion and effectively reduces TLR2- and TLR4-mediated pro-inflammatory gene expression. AMWAP exerts its anti-inflammatory function through blockade of NFκB activation, as it inhibits proteolysis of the NFκB pathway mediators IRAK-1 and IκBα without preventing IκBα phosphorylation and ubiquitination or affecting overall 20S proteasome activity. Functionally, AMWAP reduces pro-inflammatory microglial nitric oxide (NO) secretion and neurotoxicity on photoreceptor cells in vitro. Further, AMWAP promotes filopodia formation of microglia and increases the phagocytic recognition and uptake of apoptotic photoreceptor debris, common features of homeostatic regulatory microglia. We therefore hypothesize that anti-inflammatory whey acidic proteins (WAPs) could have therapeutic potential in neurodegenerative diseases of the brain and retina. The translocator protein (18 kDa) (TSPO) is a mitochondrial protein expressed in reactive glial cells and a biomarker for gliosis in the brain but has not been investigated in a retinal context so far. Various TSPO ligands have been shown to reduce neuroinflammation in neurodegenerative mouse models. We could show strong upregulation of TSPO transcript and protein levels in reactive microglial cells in vitro, microglia of the retinoschisin-deficient retinal degeneration mouse model as well as TSPO expression in microglia of the human retina. TSPO mRNA expression is high in the developing mouse retina and declines to low levels in the adult tissue. The synthetic TSPO ligand XBD173 effectively suppresses pro-inflammatory microglial gene expression, migration, proliferation, NO secretion and neurotoxicity on photoreceptors in vitro. Further, XBD173 treatment promotes filopodia formation and increases the phagocytic recognition and uptake of latex beads and apoptotic photoreceptor debris by murine and human microglial cells in vitro. Finally, XBD173 effectively reduces the number of amoeboid alerted microglia in organotypic murine retinal explant cultures stimulated with LPS. In conclusion, we have identified TSPO as a novel marker for microglial reactivity in the retina and a potential therapeutic target to reduce chronic neuroinflammation during retinal degeneration. In summary, our studies on the novel photoreceptor gene regulator SAMD7 and the microglial reactivity markers AMWAP and TSPO provide insights into potential disease mechanisms of retinal degeneration and suggest future strategies of identifying and therapeutically modulating pro-inflammatory microglial reactivity in degenerative diseases of the CNS and retina

    A Circulating MicroRNA Profile in a Laser-Induced Mouse Model of Choroidal Neovascularization

    Get PDF
    Funding: This research was funded by the Deutsche Forschungsgemeinschaft (GR5065/1-1). Author Contributions: Conceptualization, F.G. and B.H.F.W.; Data curation, T.S.; Formal analysis, P.B., M.K., A.A., and T.S.; Funding acquisition, C.K. and F.G.; Investigation, M.K. and B.H.F.W.; Methodology, C.K. and A.A.;Project administration, B.H.F.W.; Resources, M.K., A.A., T.L., and F.G.; Software, C.K. and T.S.; Supervision, T.L., F.G., and B.H.F.W.; Validation, P.B.; Visualization, C.K.; Writing—original draft, C.K. and P.B.; Writing—review & editing, B.H.F.W. All authors have read and agreed to the published version of the manuscript.Peer reviewedPublisher PD

    Observational study on variability between biobanks in the estimation of DNA concentration.

    Get PDF
    BACKGROUND: There is little confidence in the consistency of estimation of DNA concentrations when samples move between laboratories. Evidence on this consistency is largely anecdotal. Therefore there is a need first to measure this consistency among different laboratories and then identify and implement remedies. A pilot experiment to test logistics and provide initial data on consistency was therefore conceived. METHODS: DNA aliquots at nominal concentrations between 10 and 300 ng/mul were dispensed into the wells of 96-well plates by one participant - the coordinating centre. Participants estimated the concentration in each well and returned estimates to the coordinating centre. RESULTS: Considerable overall variability was observed among estimates. There were statistically significant differences between participants' measurements and between fluorescence emission and absorption spectroscopy. CONCLUSION: Anecdotal evidence of variability in DNA concentration estimation has been substantiated. Reduction in variability between participants will require the identification of major sources of variation, specification of effective remedies and their implementation

    Exponential Megapriming PCR (EMP) Cloning-Seamless DNA Insertion into Any Target Plasmid without Sequence Constraints

    Get PDF
    We present a fast, reliable and inexpensive restriction-free cloning method for seamless DNA insertion into any plasmid without sequence limitation. Exponential megapriming PCR (EMP) cloning requires two consecutive PCR steps and can be carried out in one day. We show that EMP cloning has a higher efficiency than restriction-free (RF) cloning, especially for long inserts above 2.5 kb. EMP further enables simultaneous cloning of multiple inserts.National Institutes of Health (U.S.) (Grant GM077537

    Populist communication in the new media environment: a cross-regional comparative perspective

    Get PDF
    The changing terms of mediation place new demands, opportunities and risks on the performance of the political persona. Visibility has become a double-edged sword, leaving representatives vulnerable to exposure while new tools provide opportunities for emerging entrepreneurial actors. This double risk to elites’ mediated personas—exposure and challenge from entrepreneurs—renders their armour of authenticity dangerously fragile, which nourishes a public sense of being inefficaciously represented. It is this climate in which populism currently flourishes around the globe. Three primary criteria of mediated self-representation by politicians—visibility, authenticity and efficacy—form the focus of this paper: how do populists negotiate such demands in different democratic contexts, and wherein lies the symbiosis between populism and the new media environment suggested by the literature? To answer this, the paper compares two populist cases responding to different democratic contexts: UKIP, a right-wing party from an established democracy (UK), and the Economic Freedom Fighters (EFF), a left-wing party from a transitional democracy (South Africa). The objects of study are disruptive performances by these parties, which are considered emblematic manifestations of populist ideology as they establish a Manichaean relationship between the elite and populist actors who embody the people. The paper introduces disruption as a multi-faceted and significant analytical concept to explain the populist behaviour and strategies that underlie populist parties’ responses to the demands for visibility, authenticity and efficacy that the new media environment places upon political representatives. Using mixed methods with an interpretive focus, the paper paints a rich picture of the contexts, meanings and means of construction of populist performances

    Dynamics of disease characteristics and clinical management of critically ill COVID-19 patients over the time course of the pandemic: an analysis of the prospective, international, multicentre RISC-19-ICU registry.

    Get PDF
    BACKGROUND It remains elusive how the characteristics, the course of disease, the clinical management and the outcomes of critically ill COVID-19 patients admitted to intensive care units (ICU) worldwide have changed over the course of the pandemic. METHODS Prospective, observational registry constituted by 90 ICUs across 22 countries worldwide including patients with a laboratory-confirmed, critical presentation of COVID-19 requiring advanced organ support. Hierarchical, generalized linear mixed-effect models accounting for hospital and country variability were employed to analyse the continuous evolution of the studied variables over the pandemic. RESULTS Four thousand forty-one patients were included from March 2020 to September 2021. Over this period, the age of the admitted patients (62 [95% CI 60-63] years vs 64 [62-66] years, p < 0.001) and the severity of organ dysfunction at ICU admission decreased (Sequential Organ Failure Assessment 8.2 [7.6-9.0] vs 5.8 [5.3-6.4], p < 0.001) and increased, while more female patients (26 [23-29]% vs 41 [35-48]%, p < 0.001) were admitted. The time span between symptom onset and hospitalization as well as ICU admission became longer later in the pandemic (6.7 [6.2-7.2| days vs 9.7 [8.9-10.5] days, p < 0.001). The PaO2/FiO2 at admission was lower (132 [123-141] mmHg vs 101 [91-113] mmHg, p < 0.001) but showed faster improvements over the initial 5 days of ICU stay in late 2021 compared to early 2020 (34 [20-48] mmHg vs 70 [41-100] mmHg, p = 0.05). The number of patients treated with steroids and tocilizumab increased, while the use of therapeutic anticoagulation presented an inverse U-shaped behaviour over the course of the pandemic. The proportion of patients treated with high-flow oxygen (5 [4-7]% vs 20 [14-29], p < 0.001) and non-invasive mechanical ventilation (14 [11-18]% vs 24 [17-33]%, p < 0.001) throughout the pandemic increased concomitant to a decrease in invasive mechanical ventilation (82 [76-86]% vs 74 [64-82]%, p < 0.001). The ICU mortality (23 [19-26]% vs 17 [12-25]%, p < 0.001) and length of stay (14 [13-16] days vs 11 [10-13] days, p < 0.001) decreased over 19 months of the pandemic. CONCLUSION Characteristics and disease course of critically ill COVID-19 patients have continuously evolved, concomitant to the clinical management, throughout the pandemic leading to a younger, less severely ill ICU population with distinctly different clinical, pulmonary and inflammatory presentations than at the onset of the pandemic

    Prognostic factors associated with mortality risk and disease progression in 639 critically ill patients with COVID-19 in Europe: Initial report of the international RISC-19-ICU prospective observational cohort

    Get PDF

    Curcumin is a potent modulator of microglial gene expression and migration

    Get PDF
    Background Microglial cells are important effectors of the neuronal innate immune system with a major role in chronic neurodegenerative diseases. Curcumin, a major component of tumeric, alleviates pro-inflammatory activities of these cells by inhibiting nuclear factor kappa B (NFkB) signaling. To study the immuno-modulatory effects of curcumin on a transcriptomic level, DNA-microarray analyses were performed with resting and LPS-challenged microglial cells after short-term treatment with curcumin. Methods Resting and LPS-activated BV-2 cells were stimulated with curcumin and genome-wide mRNA expression patterns were determined using DNA-microarrays. Selected qRT-PCR analyses were performed to confirm newly identified curcumin-regulated genes. The migration potential of microglial cells was determined with wound healing assays and transwell migration assays. Microglial neurotoxicity was estimated by morphological analyses and quantification of caspase 3/7 levels in 661W photoreceptors cultured in the presence of microglia-conditioned medium. Results Curcumin treatment markedly changed the microglial transcriptome with 49 differentially expressed transcripts in a combined analysis of resting and activated microglial cells. Curcumin effectively triggered anti-inflammatory signals as shown by induced expression of Interleukin 4 and Peroxisome proliferator activated receptor α. Several novel curcumin-induced genes including Netrin G1, Delta-like 1, Platelet endothelial cell adhesion molecule 1, and Plasma cell endoplasmic reticulum protein 1, have been previously associated with adhesion and cell migration. Consequently, curcumin treatment significantly inhibited basal and activation-induced migration of BV-2 microglia. Curcumin also potently blocked gene expression related to pro-inflammatory activation of resting cells including Toll-like receptor 2 and Prostaglandin-endoperoxide synthase 2. Moreover, transcription of NO synthase 2 and Signal transducer and activator of transcription 1 was reduced in LPS-triggered microglia. These transcriptional changes in curcumin-treated LPS-primed microglia also lead to decreased neurotoxicity with reduced apoptosis of 661W photoreceptor cultures. Conclusions Collectively, our results suggest that curcumin is a potent modulator of the microglial transcriptome. Curcumin attenuates microglial migration and triggers a phenotype with anti-inflammatory and neuroprotective properties. Thus, curcumin could be a nutraceutical compound to develop immuno-modulatory and neuroprotective therapies for the treatment of various neurodegenerative disorders

    Retinal expression and localization of Mef2c support its important role in photoreceptor gene expression

    No full text
    Photoreceptor-specific gene expression is controlled by a hierarchical network of transcription factors, including the master regulators cone-rod homeobox (Crx) and neural retina leucine zipper (Nrl). Myocyte-enhancer factor 2c (Mef2c) is an ubiquitously expressed transcription factor with important functions in the cardiovascular system. Here, we performed a detailed analysis of Mef2c expression, localization and function in the retina to further elucidate its potential role for photoreceptor gene regulation. We showed that murine retinal Mef2c mRNA expression was high at birth and peaked at late postnatal developmental stages. Using immunohistochemistry and Western blot, Mef2c protein was detected in the outer nuclear layer of adult mouse and human retinas and localized to the nucleus of 661W photoreceptor-like cells. Mef2c knock-down in 661W cells reduced the expression of arrestin 3 (Arr3) and medium-wave-sensitive cone opsin (Opn1mw) but increased transcript levels of mitogen-activated protein kinase 15 (Mapk15) and phosphodiesterase 6h (Pde6h). In conclusion, Mef2c is highly expressed in the retina where it modulates photoreceptor-specific gene expression. (C) 2016 Elsevier Inc. All rights reserved
    corecore