15 research outputs found

    Correction to: Cluster identification, selection, and description in Cluster randomized crossover trials: the PREP-IT trials

    Get PDF
    An amendment to this paper has been published and can be accessed via the original article

    Designing Magnetic Layered Double Hydroxides and Two-Dimensional Magnetic Nano-Nets of Cobalt Ferrite through a Novel Approach

    No full text
    The present study has a dual aim of supporting magnetic nanoparticles over the nanolayers of LDHs and designing two-dimensional magnetic nano-nets of cobalt ferrite. In this trend, nanoparticles of CoFe2O4 were prepared and supported by Co-Fe LDH through urea hydrolysis. The nanolayered structures of Co-Fe LDH were confirmed by X-ray diffraction, energy-dispersive X-ray spectrometry, FT-IR spectra, thermal analyses, and transmission electron microscopy. In addition, they indicated that 13.2% CoFe2O4 were supported over Co-Fe LDH. Transformation of the nanolayered structures of Co-Fe LDH to nano-nets was achieved by the catalytic effect of the supported CoFe2O4 nanoparticles through solvent thermal technique. X-ray diffraction patterns and transmission electron microscopy images confirmed the transformation of the supported Co-Fe LDH to nano-nets of cobalt ferrite. In order to indicate the effect of the LDH for designing the nano-nets, nanoparticles of cobalt ferrite were prepared by the same technique without LDH. The magnetic behavior of the nano-nets and the supported Co-Fe LDH were measured and compared with the nanoparticles through vibrating sample magnetometer technique. The magnetic parameters indicated that the prepared nano-nets have ferromagnetic behavior and high coercivity. However, the prepared nanoparticles revealed a superparamagnetic state and low coercivity. The experimental results concluded that the incorporation of nanoparticles with nanowires into nano-net structures has been found to be an efficient way to improve their magnetic properties and prevent their agglomerations. Finally, layered double hydroxides are an important source for constructing magnetic nanolayered structures and nano-nets

    Synthesis of Zn Intercalated Zn–V@Mo–V Nanorods-based Cathodes for Prolonged Cyclic Stability of Rechargeable Aqueous Zinc-Ion Batteries

    No full text
    Stationary rechargeable Zn-ion batteries (ZIBs) are attractive energy storages systems because of their natural abundance, safety, and low cost. High capacity, stable, and robust cathode materials play an important role in aqueous electrolyte systems in ZIBs, where metal oxide cathode dissolution is a problem that needs to be addressed. Herewith, we report an intercalation-type Zn-doped Zn–V@Mo–V (ZMV) cathode material affording prolonged cycle stability and high storage capacity. Porous, superfine nanostructures offer Zn2+ ion diffusion pathways, alleviating intercalation redox reactions without dissolution. Zn doping restructures the cathode expansion-like, resulting in increased electrical conductivity and faster electrochemical ion diffusion. A reversible and uniform Zn electroplating at the anode surface interface indicates improved cell reversibility. The ZMV cathode scales up to assemble a pouch cell of Zn//ZnSO4//ZMV, where the cathode enhances the rate performance and decreases the self-discharge rate. High efficiency and long cycle life can be endowed to the cathode material to construct a stable Zn-ion battery, accelerating the commercialization of the whole system

    Magnetic Properties and Cation Distribution of Bimetallic (Mn-Co) Doped NiFe2O4 Nanoparticles

    No full text
    Nickel ferrite (NiFe2O4), an inverse spinel crystal structure and a soft transition metal oxide, contemplated as a good magnetic semiconducting material with low coercivity and saturation magnetization (M (s)). In this study, Ni1-2xMnxCoxFe2O4 (0.0 <= x <= 0.5) nanoparticles were synthesized by the microwave assisted approach with citric acid as fuel. The effect of both cobalt and manganese substitution on the morphological, structural, and magnetic properties of the NiFe2O4 nanoparticles were studied. X-ray powder diffraction patterns confirm their complete conversion to NiFe2O4 crystal phase and the increase in lattice constant provides evidence for the effect of both Co and Mn substitution. SEM images divulge the nano-size of the prepared products with speck morphology. Magnetic properties of the final products were evaluated using Vibrating Sample Magnetometer and Fe-57 Mossbauer spectroscopy. The results from both analyses suggested the M (s) and coercive field of NiFe2O4 NPs increases as the concentration of Co and Mn increase and Ms getting closer to the bulk value

    Magnetic Properties and Cation Distribution of Bimetallic (Mn-Co) Doped NiFe2O4 Nanoparticles

    No full text
    Nickel ferrite (NiFe2O4), an inverse spinel crystal structure and a soft transition metal oxide, contemplated as a good magnetic semiconducting material with low coercivity and saturation magnetization (M (s)). In this study, Ni1-2xMnxCoxFe2O4 (0.0 <= x <= 0.5) nanoparticles were synthesized by the microwave assisted approach with citric acid as fuel. The effect of both cobalt and manganese substitution on the morphological, structural, and magnetic properties of the NiFe2O4 nanoparticles were studied. X-ray powder diffraction patterns confirm their complete conversion to NiFe2O4 crystal phase and the increase in lattice constant provides evidence for the effect of both Co and Mn substitution. SEM images divulge the nano-size of the prepared products with speck morphology. Magnetic properties of the final products were evaluated using Vibrating Sample Magnetometer and Fe-57 Mossbauer spectroscopy. The results from both analyses suggested the M (s) and coercive field of NiFe2O4 NPs increases as the concentration of Co and Mn increase and Ms getting closer to the bulk value

    The Level of Burden among Caregivers of Patients with Alzheimer’s Disease in Saudi Arabia

    No full text
    Background: Caregiver burden is a serious global issue associated with the growing number of older adult patients with Alzheimer’s disease (AD). AD patients become more dependent on their caregivers and require assistance with basic daily life activities. This study aims to measure the caregiver burden of informal caregivers of AD patients and to determine their characteristics. In addition, it intends to understand caregiver coping techniques and assess their medication knowledge. Methods: This was a cross-sectional study including 148 informal caregivers mainly recruited by the Saudi Alzheimer’s Disease Association (SADA). A four-part study questionnaire was used for data collection in the Arabic Language and included the following: socio-demographic characteristics of AD patients and their caregivers, the 12-item version of the Zarit Burden Interview (ZBI), and adapted questions on coping techniques and medication knowledge. Results: A total of 148 caregivers (62% were female) participated in this study, and 79.06% were between 30 and 60 years old. The ZBI average score was 27, indicating a moderate to high burden. Caregivers reported their need for services to improve their quality of life. The medication knowledge was insufficient in most aspects except that more than half were aware of medications’ side effects. Conclusion: Our study revealed that the average burden among informal caregivers of AD patients was moderate–high

    Effect of Biosynthesized ZnO Nanoparticles on Multi-Drug Resistant Pseudomonas Aeruginosa

    No full text
    Synthesis of nanoparticles using the plants has several advantages over other methods due to the environmentally friendly nature of plants. Besides being environmentally friendly, the synthesis of nanoparticles using plants or parts of the plants is also cost effective. The present study focuses on the biosynthesis of zinc oxide nanoparticles (ZnO NPs) using the seed extract of Butea monsoperma and their effect on to the quorum-mediated virulence factors of multidrug-resistant clinical isolates of Pseudomonas aeruginosa at sub minimum inhibitory concentration (MIC). The synthesized ZnO NPs were characterized by different techniques, such as Fourier transform infra-red spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and transmission electron microscopy (TEM). The average size of the nanoparticles was 25 nm as analyzed by TEM. ZnO NPs at sub MIC decreased the production of virulence factors such as pyocyanin, protease and hemolysin for P. aeruginosa (p &le; 0.05). The interaction of NPs with the P. aeruginosa cells on increasing concentration of NPs at sub MIC levels showed greater accumulation of nanoparticles inside the cells as analyzed by TEM

    Genotoxic and cytotoxic properties of zinc oxide nanoparticles phyto-fabricated from the obscure morning glory plant ipomoea obscura (L.) Ker Gawl

    No full text
    The study was undertaken to investigate the antioxidant, genotoxic, and cytotoxic potentialities of phyto-fabricated zinc oxide nanoparticles (ZnO-NPs) from Ipomoea obscura (L.) Ker Gawl. aqueous leaf extract. The UV-visible spectral analysis of the ZnO-NPs showed an absorption peak at 304 nm with a bandgap energy of 3.54 eV, which are characteristics of zinc nanoparticles. Moreover, the particles were of nano-size (similar to 24.26 nm) with 88.11% purity and were agglomerated as observed through Scanning Electron Microscopy (SEM). The phyto-fabricated ZnO-NPs offered radical scavenging activity (RSA) in a dose-dependent manner with an IC50 of 0.45 mg mL(-1). In addition, the genotoxicity studies of ZnO-NPs carried out on onion root tips revealed that the particles were able to significantly inhibit the cell division at the mitotic stage with a mitotic index of 39.49%. Further, the cytotoxic studies on HT-29 cells showed that the phyto-fabricated ZnO-NPs could arrest the cell division as early as in the G0/G1 phase (with 92.14%) with 73.14% cells showing early apoptotic symptoms after 24 h of incubation. The results of the study affirm the ability of phyto-fabricated ZnO-NPs from aqueous leaf extract of I. obscura is beneficial in the cytotoxic application

    Biofabrication of zinc oxide nanoparticles from Melia azedarach and its potential in controlling soybean seed-borne phytopathogenic fungi

    No full text
    Present study, report the biofabrication of zinc oxide nanoparticles from aqueous leaf extract of Melia azedarach (MaZnO-NPs) through solution combustion method and their novel application in preventing the growth of seed-borne fungal pathogens of soybean (Cladosporium cladosporioides and Fusarium oxysporum). The standard blotter method was employed to isolate fungi and was identified through molecular techniques. The characterization of MaZnO-NPs was carried out by UV-Vis spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) equipped with Energy Dispersive Spectroscopy (EDS) and Transmission Electron Microscopy (TEM). The physicochemical characterization confirmed the particles were of high purity and nano size (30-40 nm) with a hexagonal shape. The synthesized MaZnO-NPs inhibited the growth of C. cladosporioides and F. oxysporum in a dose dependent manner. Biomass, ergosterol, lipid peroxidation, intracellular reactive oxygen species and membrane integrity determination upon MaZnO-NPs treatment offered significant activities there by confirming the mechanism of action against the test pathogens. In conclusion, due to the effectiveness of MaZnO-NPs in controlling the growth of C. cladosporioides and F. oxysporum, the synthesized MaZnO-NPs provides insight towards their potential application in agriculture and food industries. (C) 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
    corecore