45 research outputs found

    Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

    Get PDF
    For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial change

    An experimental and density functional study on conformational and spectroscopic analysis of 5-methoxyindole-2-carboxylic acid

    No full text
    In this article, a brief conformational and spectroscopic characterization of 5-methoxyindole-2-carboxylic acid (5-MeOICA) via experimental techniques and applications of quantum chemical methods is presented. The conformational analysis of the studied molecule was determined theoretically using density functional computations for ground state, and compared with previously reported experimental findings. The vibrational transitions were examined by measured FT-IR and FT-Raman spectroscopic data, and also results obtained from B3LYP and CAM-B3LYP functionals in combination with 6-311++G(d,p) basis set. The recorded proton and carbon NMR spectra in DMSO solution were analyzed to obtain the exact conformation. Due to intermolecular hydrogen bondings, NMR calculations were performed for the dimeric form of 5-MeOICA and so chemical shifts of those protons were predicted more accurately. Finally, electronic properties of steady compound were identified by a comparative study of UV absorption spectra in ethanol and water solution and TD-DFT calculations. © 2014 Elsevier B.V. All rights reserved

    Preparation and evaluation of composite hybrid nanomaterials for rare-earth elements separation and recovery

    No full text
    A new technology is necessary to representing an entire process of separation and recovery of rare-earth lanthanides (Ln(III)) elements to keep the eco-system for stable industrial growth. In this study, novel hard and soft donor organic ligand containing mesoporous composite hybrid nanomaterial (CHM) was fabricated for specific ytterbium (Yb(III)) ion separation and recovery in sustainable method. The Yb(III) ion was selected based on the Ln(III) intra-series separation behavior in the solid-liquid separation approach. The present approach was based on basic research of individual process steps with the stable complexation mechanism according to the O- and N-donor coordination. The usual bond distance between Yb-O and Yb-N was 2.206 and 2.847 Å, which was clarified that the O-atom was hardly donating than the N-atom of the synthesized organic ligand. However, both atoms were coordinating with Yb(III) ions to clarifying the stable complexation and coordination mechanism. The optimum pH solution was evaluated before selecting the separation and uptake operations and the pH was 5.0 to avoid the hydroxyl precipitation rather than adsorption based on the Ln(III) chemistry. The fabricated CHM was exhibited the high kinetic performances. The adsorption data were highly fitted with the Langmuir isotherms model and the maximum Yb(III) adsorption amount was found 139. 19 mg/g. The results were also affirmed that the effect of competing ions were not affected seriously in the Yb(III) adsorption. After successful adsorption, the Yb(III) ion was recovered with elution operation using 0.40 M HNO3 and the CHM was also regenerated at the same time for next adsorption process after washing with water. Moreover, the reuses of the CHM were possible in several cycles complying the cost-effective potential material in real waste sample treatment
    corecore