3 research outputs found

    DFT-D4 Counterparts of Leading Meta-GGA and Hybrid Density Functionals for Energetics and Geometries

    No full text
    Previously, we introduced DFT-D3(BJ) variants of the B97M-V, ωB97X-V and ωB97M-V functionals and assessed them for the GMTKN55 database [Najibi and Go- erigk, J Chem. Theory Comput. 2018, 14, 5725]. In this study, we present DFT-D4 damping parameters to build the DFT-D4 counterparts of these functionals and assess these in comparison. We extend our analysis beyond GMTKN55 and especially turn our attention to enzymatically catalysed and metal-organic reactions. We find that B97M-D4 is now the second-best performing meta-GGA functional for the GMTKN55 database and it can provide noticeably better organometallic reaction energies com- pared to B97M-D3(BJ). Moreover, the aforementioned DFT-D3(BJ) based functionals have not been thoroughly assessed for geometries and herein we close this gap by analysing geometries of noncovalently bound dimers and trimers, peptide conformers, water hexamers and transition-metal complexes. We find that several of the B97(M)- based methods—particularly the DFT-D4 versions—surpass the accuracy of previously studied methods for peptide conformer, water hexamer, and transition-metal complex geometries, making them safe-to-use, cost-efficient alternatives to the original methods. The DFT-D4 variants can be easily used with ORCA4.1 and above. </div

    An Analysis of Recent BLYP and PBE-Based Range-Separated Double-Hybrid Density Functional Approximations for Main-Group Thermochemistry, Kinetics and Noncovalent Interactions

    No full text
    We investigate the effects of range separation of the exchange energy on electronic ground-state properties for recently published double-hybrid density functionals (DHDFs) with the extensive GMTKN55 database for general main-group thermochemistry, kinetics and noncovalent interactions. We include the semi-empirical range-separated DHDFs ωB2PLYP and ωB2GP-PLYP developed by our group for excitation energies, together with their ground-state-parametrized variants, which we denote herein as ωB2PLYP18 and ωB2GP-PLYP18. We also include the non-empirical range-separated DHDFs RSX-0DH and RSX-QIDH. For all six DHDFs, damping parameters for the DFT-D3 dispersion correction (and for its DFT-D4 variant) are presented. We comment on when the range-separated functionals can be more beneficial than their global counterparts, and conclude that range separation alone is no guarantee for overall improved results. We observe that the BLYP-based functionals generally outperform the PBE-based functionals. We finally note that the best-performing double-hybrid density functionals for GMTKN55 are still the semi-empirical range-separated double hybrids ωDSD3-PBEP86-D4 and ωDSD72-PBEP86-D4, the former of which includes a third-order perturbative correlation term in addition to the more conventional second- order perturbation that DHDFs are based upon. </div

    A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions

    No full text
    corecore