76 research outputs found

    Acclimation to warm temperatures modulates lactate and malate dehydrogenase isozymes in juvenile Horabagrus brachysoma (Günther)

    Get PDF
    Differential expression of isozymes enables fish to tolerate temperature fluctuations in their environment. The present study explores the modulation of lactate dehydrogenase (LDH) and cytoplasmic malate dehydrogenase (sMDH) isozyme expression in the heart, muscle, brain, liver, gill, and kidney of juvenile Horabagrus brachysoma after 30 days of acclimation at 26, 31, 33, and 36°C. LDH and sMDH zymography were performed using native polyacrylamide gel electrophoresis. The zymography revealed five distinct bands of LDH isoenzymes (labelled from cathode to anode as LDH-A4, LDH-A3B1, LDH-A2B2, LDH-A1B3, and LDH-B4) and three distinct bands of sMDH isoenzymes (labelled from cathode to anode as sMDH-A2, sMDH-AB, and sMDH-B2), with considerable variation in their expression in the tissues. Acclimation to the test temperatures did not influence the expression patterns of LDH or sMDH isozymes. Densitometric analysis of individual isozyme bands revealed a reduction in the densities of bands containing the LDH-B and sMDH-B molecules, while the densities of bands containing the LDH-A and sMDH-A molecules increased in the gills and muscle, indicating the role of these organs in adaptive responses to thermal acclimation. However, the total densities of the LDH and sMDH isozymes increased with higher acclimation temperatures, indicating that adaptation to increased temperatures in H. brachysoma is primarily characterised by quantitative changes in isozyme expression

    Revisiting Secure Two-Party Computation with Rational Players

    Get PDF
    A seminal result of Cleve (STOC 1986) showed that fairness, in general, is impossible to achieve in case of two-party computation if one of them is malicious. Later, Gordon et al. (STOC 2008, JACM 2011) observed that there exist two distinct classes of functions for which fairness can be achieved. One is any function without an embedded XOR, and the other one is a particular function containing an embedded XOR. In this paper, we revisit both classes of functions in two-party computation under rational players for the first time. We identify that the protocols proposed by Gordon et al. achieve fairness in non-rational setting only. In this direction, we design two protocols, one for the millionares\u27 problem or the greater-than function (any function without embedded XOR can be converted to this function) and the other for the particular embedded XOR function of Gordon et al., and show that with rational players, our protocols achieve fairness, correctness and strict Nash equilibrium under suitable choice of parameters in complete information game setting. The dealer is offline in both of our protocols and this is in contrast with the work of Groce et al. (Eurocrypt 2012) which shows fairness and Bayesian Nash equilibrium in two party computation with rational players for arbitrary function in an incomplete information game setting

    Steady state charge conduction through solution processed liquid crystalline lanthanide bisphthalocyanine films

    Get PDF
    In-plane electrical characteristics of non-peripherally octyl (C8H17) and hexyl (C6H13) substituted liquid crystalline (LC) double decker lanthanide bisphthalocyanine (LnPc2) complexes with central metal ions lutetium (Lu), and gadolinium (Gd) have been measured in thin film formulations on interdigitated gold (Au) electrodes for the applied voltage (V_a) range of 〖0 ≤ V〗_a ≤100 V. The conduction mechanism is found to be Ohmic within the bias of 〖0 ≤ V〗_a ≤30 V 0≤Va≤30 V while the bulk limited Poole-Frenkel mechanism is responsible for the higher bias. The compounds show individual characteristics depending on the central metal ions, substituent chain lengths and their mesophases. Values of 67.55 μS〖cm〗^(-1) and 42.31 μS〖cm〗^(-1) have been obtained. for room temperature in-plane Ohmic conductivity of as-deposited octyl lutetium (C8LuPc2) and hexyl gadolinium (C6GdPc2) films, respectively while C8GdPc2 films exhibit nearly two orders of magnitude smaller conductivity. On annealing at 80 ̊C, Ohmic conductivities of C8LuPc2 and C8GdPc2 are found to have increased but the conductivity of C6GdPc2 decreases by more than one order of magnitude to 1.5 μS〖cm〗^(-1). For physical interpretation of the charge transport behavior of these three molecules, their UV-visible optical absorption spectra have been studied in the solution and in as-deposited and annealed solid phases. It is believed that both orientational and positional reorganisations are responsible depending upon the size of the central ion and side chain length

    A liquid crystalline copper phthalocyanine derivative for high performance organic thin film transistors

    Get PDF
    This journal is © The Royal Society of Chemistry 2012Bottom-gate, bottom-contact organic thin film transistors (OTFTs) were fabricated using solvent soluble copper 1,4,8,11,15,18,22,25-octakis(hexyl)phthalocyanine as the active semiconductor layer. The compound was deposited as 70 nm thick spin-coated films onto gold source–drain electrodes supported on octadecyltrichlorosilane treated 250 nm thick SiO2 gate insulators. The performance of the OTFTs was optimised by investigating the effects of vacuum annealing of the films at temperatures between 50 0C and 200 0C, a range that included the thermotropic mesophase of the bulk material. These effects were monitored by ultraviolet-visible absorption spectroscopy, atomic force microscopy and XRD measurements. Device performance was shown to be dependent upon the annealing temperature due to structural changes of the film. Devices heat treated at 100 0C under vacuum (≥10-7 mbar) were found to exhibit the highest field-effect mobility, 0.7 cm2 V^-1 s^-1, with an on–off current modulation ratio of~107, a reduced threshold voltage of 2.0 V and a sub-threshold swing of 1.11 V per decade.UK Technology Strategy Board (Project no: TP/6/EPH/6/S/K2536J) and UK National Measurement System (Project IRD C02 ‘‘Plastic Electronics’’, 2008–2011)

    "The fruits of independence": Satyajit Ray, Indian nationhood and the spectre of empire

    Get PDF
    Challenging the longstanding consensus that Satyajit Ray's work is largely free of ideological concerns and notable only for its humanistic richness, this article shows with reference to representations of British colonialism and Indian nationhood that Ray's films and stories are marked deeply and consistently by a distinctively Bengali variety of liberalism. Drawn from an ongoing biographical project, it commences with an overview of the nationalist milieu in which Ray grew up and emphasizes the preoccupation with colonialism and nationalism that marked his earliest unfilmed scripts. It then shows with case studies of Kanchanjangha (1962), Charulata (1964), First Class Kamra (First-Class Compartment, 1981), Pratidwandi (The Adversary, 1970), Shatranj ke Khilari (The Chess Players, 1977), Agantuk (The Stranger, 1991) and Robertsoner Ruby (Robertson's Ruby, 1992) how Ray's mature work continued to combine a strongly anti-colonial viewpoint with a shifting perspective on Indian nationhood and an unequivocal commitment to cultural cosmopolitanism. Analysing how Ray articulated his ideological positions through the quintessentially liberal device of complexly staged debates that were apparently free, but in fact closed by the scenarist/director on ideologically specific notes, this article concludes that Ray's reputation as an all-forgiving, ‘everybody-has-his-reasons’ humanist is based on simplistic or even tendentious readings of his work

    Intravesical wire as foreign body in urinary bladder

    No full text
    Foreign bodies in the urinary bladder are frequently the objects of jokes among doctors, but they may sometimes cause serious implications to the patients. Here we present our experiences in 3 such cases where long segments of wire were introduced into the urinary bladder through the urethra

    A heuristic method for RCPSP with fuzzy activity times

    No full text
    In this paper, we propose a heuristic method for resource constrained project scheduling problem with fuzzy activity times. This method is based on priority rule for parallel schedule generation scheme. Calculation of critical path in this case requires comparison of fuzzy numbers. Distance based ranking of fuzzy number is used for finding the critical path length and concept of shifting criticality is proposed for some of the special cases. We also propose a measure for finding the non-integer power of a fuzzy number. We discuss some properties of the proposed method. We use an example to illustrate the method.Project scheduling Time Critical path Fuzzy number

    Intravesical wire as foreign body in urinary bladder

    No full text

    To make polymer: quantum dot hybrid solar cells NIR-active by increasing diameter of PbSnanoparticles

    No full text
    We fabricate NIR-active solar cells based on PbS quantum dots and a conventional conjugated polymer. These devices act as solar cells under exclusively NIR wavelengths above 650 nm. Here PbS nanoparticles absorb photons in the NIR range that in turn generate excitons. We show that with an assistance from a strong electron-acceptor (TiO<SUB>2</SUB>), these excitons can be dissociated to electrons and holes to yield a photocurrent in the external circuit. We then aim to extend the spectral window of the solar cells to higher wavelength region by increasing the diameter of PbS nanoparticles to make the cells further NIR-active. We observe that the short-circuit current (J<SUB>SC</SUB>) shows a peak when the diameter of PbS nanoparticles increases. Here, the spectral window can be extended till conduction band-edge of PbS quantum dots falls below that of TiO<SUB>2 </SUB>nanostructures cutting off the electron-transfer pathway. The NIR-active photovoltaic solar cells yield a short-circuit current (J<SUB>SC</SUB>) of 1.0 mA/cm<SUP>2</SUP>, open-circuit voltage (V<SUB>OC</SUB>) of 0.42 V, and power conversion efficiency (η ) of 0.16% and remain operative till 1200 nm

    Hybrid core-shell nanoparticles: photoinduced electron-transfer for charge separation and solar cell applications

    No full text
    We report growth and formation of hybrid core-shell nanoparticle systems, where photoinduced electron-transfer takes place from the II-VI semiconducting core to an organic shell. With the hybrid core-shell nanoparticles, we fabricate devices so that the photoinduced electron-transfer can finally yield photocurrent and result photovoltaic solar cells. Formation of an organic shell-layer on CdSe nanoparticles is supported by electronic absorption spectroscopy. Electron-transfer from the nanoparticle in the core to a number of organic molecules in the shell is established from quenching of photoluminescence intensity of CdSe nanoparticles as well as from a change in the lifetime of photoluminescence emission. Devices based on the hybrid core-shell nanoparticles in a suitable hole-transporting layer with two dissimilar metal electrodes show efficient photovoltaic performance. Here, following the electron-transfer, electrons flow through the organic molecules and holes, left in the nanoparticles, move through the hole-transporting polymer to the opposite electrodes to yield photovoltaic short-circuit current. The role of CdSe nanoparticles in light-harvesting and charge-generation has been substantiated by control experiments with ZnS nanoparticles in the core. In ZnS-based hybrid core-shell systems, photovoltaic performance is low since photoinduced electron-transfer does not occur from ZnS to the dye
    • …
    corecore