3,485 research outputs found

    Kitchen Chemistry: practical chemistry with simple equipment and readily available materials

    Get PDF
    The Kitchen Chemistry Science Show uses readily available materials and unsophisticated equipment. The development of the show is outlined and each of the demonstrations is described in detail. For each demonstration there is an explanation of the demonstration and, where appropriate, a suggestion for an extension to a whole class activity. Indications of safety precautions are also discussed. Further development of the Kitchen Chemistry Outreach Project is then outlined with a description of future plans

    The photochemistry and photophysics of a series of alpha octa(alkyl-substituted) silicon, zinc and palladium phthalocyanines

    Get PDF
    Photophysical and photochemical measurements have been made on a series of novel alpha octa(alkyl-substituted) silicon, zinc and palladium phthalocyanines for which the synthesis is outlined. Fluorescence quantum yields and lifetimes, triplet quantum yields and lifetimes and singlet delta oxygen quantum yields were measured in 1% v/v pyridine in toluene. The effects of varying central atom and addition of alkyl substituents relative to unsubstituted parent molecules, zinc phthalocyanine (ZnPc) and silicon phthalocyanine (SiPc), are discussed. All phthalocyanines studied exhibit absorption and emission maxima in the region of 680–750 nm with molar absorptivity of the Q-band 105 M−1 cm−1. The series of compounds also exhibited triplet quantum yields of 0.65–0.95 and singlet oxygen quantum yields of 0.49–0.93

    Generating large question banks of graded questions with tailored feedback and its effect on student performance

    Get PDF
    Formative assessments have been developed to give students practice with simple mathematical manipulations necessary in physical chemistry. A series of computer programs has been used to generate large pools of questions to accompany a core undergraduate physical chemistry module. In each assessment the questions are graded to increase the cognitive load gradually and feedback is tailored to each individual response. Furthermore, the assessments are arranged in a “daisy chain” to ensure that one is completed before the next may be attempted. The difference in terminal examination results between cohorts prior and post intervention is presented. There appears to have been a positive effect on the examination performance of the post intervention students

    Stabilization and precise calibration of a continuous-wave difference frequency spectrometer by use of a simple transfer cavity

    Get PDF
    A novel, simple, and inexpensive calibration scheme for a continuous-wave difference frequency spectrometer is presented, based on the stabilization of an open transfer cavity by locking onto the output of a polarization stabilized HeNe laser. High frequency, acoustic fluctuations of the transfer cavity length are compensated with a piezoelectric transducer mounted mirror, while long term drift in cavity length is controlled by thermal feedback. A single mode Ar+ laser, used with a single mode ring dye laser in the difference frequency generation of 2–4 µm light, is then locked onto a suitable fringe of this stable cavity, achieving a very small long term drift and furthermore reducing the free running Ar+ linewidth to about 1 MHz. The dye laser scan provides tunability in the difference frequency mixing process, and is calibrated by marker fringes with the same stable cavity. Due to the absolute stability of the marker cavity, precise frequency determination of near infrared molecular transitions is achieved via interpolation between these marker fringes. It is shown theoretically that the residual error of this scheme due to the dispersion of air in the transfer cavity is quite small, and experimentally that a frequency precision on the order of 1 MHz per hour is routinely obtained with respect to molecular transitions. Review of Scientific Instruments is copyrighted by The American Institute of Physics

    Probing the electron EDM with cold molecules

    Get PDF
    We present progress towards a new measurement of the electron electric dipole moment using a cold supersonic beam of YbF molecules. Data are currently being taken with a sensitivity of 1027e.cm/day10^{-27}\textrm{e.cm}/\sqrt{\textrm{day}}. We therefore expect to make an improvement over the Tl experiment of Commins' group, which currently gives the most precise result. We discuss the systematic and statistical errors and comment on the future prospect of making a measurement at the level of 1029e.cm/day10^{-29}\textrm{e.cm}/\sqrt{\textrm{day}}.Comment: 8 pages, 6 figures, proceedings of ICAP 200

    Acoustic receptivity and transition modeling of Tollmien-Schlichting disturbances induced by distributed surface roughness

    Get PDF
    Acoustic receptivity to Tollmien-Schlichting waves in the presence of surface roughness is investigated for a flat plate boundary layer using the time-harmonic incompressible linearized Navier-Stokes equations. It is shown to be an accurate and efficient means of predicting receptivity amplitudes, and therefore to be more suitable for parametric investigations than other approaches with DNS-like accuracy. Comparison with literature provides strong evidence of the correctness of the approach, including the ability to quantify non-parallel flow effects. These effects are found to be small for the efficiency function over a wide range of frequencies and local Reynolds numbers. In the presence of a two-dimensional wavy-wall, non-parallel flow effects are quite significant, producing both wavenumber detuning and an increase in maximum amplitude. However, a smaller influence is observed when considering an oblique Tollmien-Schlichting wave. This is explained by considering the non-parallel effects on receptivity and on linear growth which may, under certain conditions, cancel each other out. Ultimately, we undertake a Monte-Carlo type uncertainty quantification analysis with two-dimensional distributed random roughness. Its power spectral density (PSD) is assumed to follow a power law with an associated uncertainty following a probabilistic Gaussian distribution. The effects of the acoustic frequency over the mean amplitude of the generated two-dimensional Tollmien-Schlichting waves are studied. A strong dependence on the mean PSD shape is observed and discussed according to the basic resonance mechanisms leading to receptivity. The growth of Tollmien-Schlichting waves is predicted with non-linear parabolized stability equations computations to assess the effects of stochasticity in transition location

    A comparison of A-level performance in economics and business studies: how much more difficult is economics?

    Get PDF
    This paper uses ALIS data to compare academic performance in two subjects often viewed as relatively close substitutes for one another at A-level. The important role of GCSE achievement is confirmed for both subjects. There is evidence of strong gender effects and variation in outcomes across Examination Boards. A counterfactual exercise suggests that if the sample of Business Studies candidates had studied Economics nearly 40% of those who obtained a grade C or better in the former subject would not have done so in the latter. The opposite exercise uggests that 12% more Economics candidates would have achieved a grade C or better if they had taken Business Studies. In order to render a Business Studies A-level grade comparable to an Economics one in terms of relative difficulty, we estimate that a downward adjustment of 1.5 UCAS points should be applied to the former subject. This adjustment is lower than that suggested by correction factors based on conventional subject pair analysis for these two subjects

    On the Cooling of the Neutron Star in Cassiopeia A

    Full text link
    We demonstrate that the high-quality cooling data observed for the young neutron star in the supernova remnant Cassiopeia A over the past 10 years--as well as all other reliably known temperature data of neutron stars--can be comfortably explained within the "nuclear medium cooling" scenario. The cooling rates of this scenario account for medium-modified one-pion exchange in dense matter and polarization effects in the pair-breaking formations of superfluid neutrons and protons. Crucial for the successful description of the observed data is a substantial reduction of the thermal conductivity, resulting from a suppression of both the electron and nucleon contributions to it by medium effects. We also find that possibly in as little as about ten years of continued observation, the data may tell whether or not fast cooling processes are active in this neutron star.Comment: 4 pages, 3 figure
    corecore