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Acoustic receptivity to Tollmien-Schlichting waves in the presence of surface roughness is investigated for a flat
plate boundary layer using the time-harmonic incompressible linearized Navier-Stokes equations. It is shown
to be an accurate and efficient means of predicting receptivity amplitudes, and therefore to be more suitable
for parametric investigations than other approaches with DNS-like accuracy. Comparison with literature
provides strong evidence of the correctness of the approach, including the ability to quantify non-parallel
flow effects. These effects are found to be small for the efficiency function over a wide range of frequencies
and local Reynolds numbers. In the presence of a two-dimensional wavy-wall, non-parallel flow effects are
quite significant, producing both wavenumber detuning and an increase in maximum amplitude. However,
a smaller influence is observed when considering an oblique Tollmien-Schlichting wave. This is explained by
considering the non-parallel effects on receptivity and on linear growth which may, under certain conditions,
cancel each other out. Ultimately, we undertake a Monte-Carlo type uncertainty quantification analysis with
two-dimensional distributed random roughness. Its power spectral density (PSD) is assumed to follow a power
law with an associated uncertainty following a probabilistic Gaussian distribution. The effects of the acoustic
frequency over the mean amplitude of the generated two-dimensional Tollmien-Schlichting waves are studied.
A strong dependence on the mean PSD shape is observed and discussed according to the basic resonance
mechanisms leading to receptivity. The growth of Tollmien-Schlichting waves is predicted with non-linear
parabolized stability equations computations to assess the effects of stochasticity in transition location.

Keywords: Acoustic receptivity, Harmonic Linear Navier Stokes, Surface roughness, Tollmien-Schlichting
instability, Uncertainty quantification

I. INTRODUCTION

A laminar boundary layer lowers skin friction drag
when compared to a turbulent boundary layer convect-
ing over a surface. Prediction of the laminar to turbulent
transition for a laminar boundary layer over a swept wing
is therefore a central concern in the design of low drag
commercial aircraft. Actively seeking to delay this phe-
nomena in order to maximize the extent of the laminar
regime and minimize drag requires a clear understand-
ing of how transition location is affected by the external
environment, wing geometry and surface finish.

In a small perturbation environment, the process lead-
ing to transition of the boundary layer can be decom-
posed into three stages: (i) receptivity, which entails the
generation of instabilities, (ii) linear growth, and (iii)
non-linear growth culminating in breakdown into the tur-
bulent regime1. Non-linear growth includes saturation
and the formation of secondary instabilities. For larger
disturbance environments other mechanisms which by-
pass linear growth may come into play. This process
generally involves transient growth which is described by
nonmodal stability theory2,3.

The term receptivity was coined in 1969 by Morkovin4.
It can be defined as the means through which external
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disturbances penetrate the boundary layer and originate
internal perturbations that play a role in boundary layer
transition to turbulent flow. Early efforts to predict tran-
sition based on the linear eN method5,6 bypassed the re-
ceptivity stage and provided an amplification based cri-
teria for transition prediction assuming the presence of
boundary layer disturbances, most commonly as normal
modes. This technique fails to account for the amplitude
of the disturbances and therefore cannot be extended to
correctly predict onset of the non-linear growth phase7.
Moreover, it is a semi-empirical method because it re-
quires calibration of the critical N-factor as a function of
the flow conditions and of the disturbance environment8.
Receptivity originated as an effort to go beyond the lim-
itations of linear stability theory, which does not offer
the degrees of freedom to incorporate the effects of the
external environment in transition prediction. It is now
widely accepted to be the “missing piece” that is required
in order to devise a universal amplitude-based transition
prediction criterion.

The external forcing of the boundary layer must sat-
isfy the resonance condition in order to generate the nor-
mal modes described by the Orr-Sommerfeld (O-S) equa-
tion; its frequency and wavelength must match that of
the eigenmode of the unstable wave. While frequency
compatibility is commonly found in acoustic waves, their
wavelengths are much longer. Receptivity thus occurs
when this disparity in length scales is overcome through
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a length-scale reduction mechanism. Goldstein9,10 and
Ruban11 first elucidated this process by showing that
receptivity occurs in non-parallel flow regions where
streamwise variations of the base flow occur on the scale
of the wavelength of Tollmien-Schlichting (T-S) waves.
This includes the leading edge where the boundary layer
is extremely thin and rapidly growing and hence presents
the non-parallel flow features necessary for the length-
scale reduction mechanism. The second class of non-
parallel flow regions is much broader. It includes any
region with a feature causing a short-scale flow pertur-
bation of the order of the instability wavelength. Rough-
ness elements, surface discontinuities, surface waviness,
separation bubbles and suction strips constitute exam-
ples.

This paper focuses on the unswept flat plate problem
and therefore on the formation of Tollmien-Schlichting
waves generated by surface inhomogeneities, which are
viscous instabilities. We overlook leading edge acoustic
receptivity which is known to produce T-S waves with
a very weak equivalent amplitude when compared to
surface roughness mechanisms9–12. The seminal works
of Ruban11 and Goldstein10 considered the second class
of receptivity response, which gives a stronger response
and is also now established to be the primary mecha-
nism which plays a role in surface roughness induced
disturbance generation. Stewartson13,14 and Messiter’s15

triple-deck asymptotic structure was used to analytically
obtain both the steady perturbation caused by the pres-
ence of a wall feature, and the T-S wave resulting from
the non-linear interaction between the freestream acous-
tic induced Stokes layer and the steady-state perturba-
tion. A non-linear analogue was investigated and solved
numerically by Bodonyi et al.16 While the high-Reynolds-
number asymptotic approach reveals the physical mech-
anisms behind the receptivity phenomena, it is also lim-
ited for three reasons. Firstly because the triple-deck
structure is only formally valid near the lower-branch of
neutral stability. Secondly, it does not account for fi-
nite Reynolds number effects. Lastly, because it does
not allow us to study the effects of frequency at differ-
ent Reynolds numbers since these are reduced to a single
parameter.

Choudhari & Streett17,18 and Crouch19,20 proposed a
so-called finite-Reynolds-number theory (FRNT) to pre-
dict receptivity in both localized and non-localized re-
gions, overcoming most of these limitations. Crouch &
Bertolotti21 extended the work to three-dimensional (3-
D) T-S waves with so-called mode-interaction theory and
a parabolized stability equations (PSE)22 type formal-
ism. This work was generalized for finite height humps
by Nayfeh & Ashour23, who showed agreement with the
non-linear behavior for large roughness heights obtained
by Saric in his acoustic receptivity experiments24. Wu25

extended the asymptotic theory to distributed roughness
in the presence of vortical and acoustic waves. Inter-
estingly, when comparing the results of his second-order
theory with Choudhari’s18 theory and experimental find-

ings of Wiegel & Wlezien26, Wu found first-order theory
to be a much more consistent fit; second-order corrections
gave worse agreement.

The inclusion of non-parallel effects in the finite-
Reynolds number theory was done approximately by
Bertolotti27 through a Taylor expansion of the base-
flow treated in Fourier space (residue-based analysis).
Previous approaches28–30 restricted their analysis to a
single slowly-varying perturbation ansatz. In particu-
lar, the multiple-scales method30 was recently applied to
the linearized Navier-Stokes (LNS) equations to model
receptivity31. The parabolized stability equations22,32,33

also partially capture non-parallel flow effects.

Hill34 used the properties of adjoint solutions for recep-
tivity calculations. Even though Hill’s theory is general
enough to be applied to any set of equations describ-
ing boundary layer instabilities, he solved the inhomo-
geneous Orr-Sommerfeld equation in the presence of an
acoustic wave and surface roughness. Airiau35 and Collis
& Dobrinsky36 extended Hill’s work to the parabolized
stability equations in order to account for non-parallel
flow effects. The adjoint parabolized stability equations
had first been proposed by Herbert22. More recently, the
same method was applied to the compressible linearized
Navier-Stokes equations to model cross-flow instabilities
in an infinite swept wing37.

Due to recent advances in computational hardware and
construction of efficient numerical approaches, direct nu-
merical simulations have been gaining traction in the last
20 years38–46. Collis & Lele44 studied stationary cross-
flow instabilities by solving the compressible linearized
Navier-Stokes equations assuming a Fourier decompo-
sition in the spanwise direction and time-stepping the
solution towards a stationary state. Lastly, De Tullio
& Ruban41 took on the acoustic receptivity problem by
solving the compressible unsteady Navier-Stokes equa-
tions to compute the steady basic flows, and the LNS
equations to obtain the unsteady perturbations. The vast
majority of these works are computationally demanding,
thus severely limiting their applicability in sensitivity and
parametric investigations or design optimization analysis.

We highlight the work of Streett46, who suggested
the use of the time-harmonic linearized incompressible
Navier-Stokes equations to model receptivity. Due to
continued improvements in computer hardware (large
memory availability, multi-core CPU’s and processor
speed), the harmonic LNS solution route is an appealing
means to accurately and efficiently model acoustic re-
ceptivity problems. The acoustic receptivity framework
considered herein extends the earlier works of Mughal
& Ashworth47 and corresponding adjoint based treat-
ments (see Thomas, Mughal & Ashworth37) who used
this technique in the context of modeling roughness in-
duced stationary crossflow receptivity of a 3-D boundary-
layer swept wing problem. A Monte-Carlo based uncer-
tainty quantification (UQ) analysis was devised to pro-
vide estimates of the variances to be expected in crossflow
induced transition, arising from uncertainties in the ran-
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domly prescribed surface roughness description (see §VI).
The core numerics and the UQ analysis used are similar
to that pursued by Mughal & Ashworth47; though the
acoustic receptivity advancement of the concept has ad-
ditional challenges.

The essentials of the receptivity modelling we un-
dertake are based on Choudhari & Streett’s17 double-
parameter expansion of the exact unsteady Navier-Stokes
equations into a number of sub-problems which can be
solved sequentially: (i) the boundary layer base flow, (ii)
the acoustic-induced Stokes shear-wave, (iii) the steady
perturbation caused by the presence of surface roughness,
and finally (iv) the resulting T-S disturbance. Each sub-
problem is solved for in an efficient and accurate man-
ner with a standard boundary layer solver, a linearized
unsteady boundary layer equations (LUBLE) solver, a
steady LNS solver, and a time-harmonic LNS solver, re-
spectively. The last two LNS solve steps determine the
total computational time to leading order. Specifically,
these ultimately require the LU decomposition of a large
banded matrix yielded by the discretization of the LNS
equations, which is the most time-consuming aspect. To
summarize, each of the Choudhari & Streett17 FRNT
stages have been replaced with more physically-correct
models, which account for non-parallelism and any in-
herent ellipticity of the flow physics through usage of the
LNS formulation.

The reasons for pursuing this methodology are three-
fold: it is general and versatile enough to accommo-
date different receptivity mechanisms (vorticity, wing
vibration, suction, heating)17, a wide range of flow
conditions41, and finally non-linear corrections (both due
to finite-height roughness and interaction of acoustic
modes). It is sufficiently fast to be used recurrently (one
acoustic frequency scenario can currently be computed
in under 5 minutes approximately, using 20 CPU cores),
while also enjoying the advantage of being able to calcu-
late receptivity amplitudes for a range of different rough-
ness shapes at little additional computational cost.

Unlike asymptotic and finite-Reynolds number theo-
ries, important in their own right for uncovering the basic
mechanisms of receptivity, the time-harmonic LNS ap-
proach is capable of fully capturing both low-Reynolds-
number and non-parallel effects and thus has DNS-like
accuracy. Not only is the base flow divergence taken
into account, but unlike many local theories17,19,23, the
growth and evolution of the Stokes layer is also accurately
modeled through the LUBLE. Apart from the boundary
layer approximation used to compute the base flow and
the acoustic perturbation, the validity of which has been
verified many times over, one could argue that its accu-
racy should in every aspect be equal to that of DNS. In
this paper, we show that our methodology can provide
significant corrections to local theories.

The time-harmonic LNS formalism and the associated
efficient LU decomposition approach yield considerable
advantages in computational time over time-stepping
tools when one is interested in the time-asymptotic limit

behavior of a few select acoustic frequencies46. It is there-
fore more appropriate for rapid design and parametric
investigations. In this paper, though we elucidate the
method for the incompressible zero pressure gradient Bla-
sius flow, we believe that with continued work the method
can readily be extended to airfoil surfaces of interest in
the aerospace sector.

The essential focus of the paper covers three key as-
pects. Firstly, we highlight the technique employed for
receptivity modeling. Secondly, natural distributed sur-
face roughness is recognized as a key feature which plays
a role in the generation of T-S disturbances; the method
allows this to be easily modeled. Finally, we provide a
means to quantify the variance in T-S transition location
that should be expected due to uncertainties arising in
the surface roughness field description, which mimic the
stochastic nature of real surfaces.

The remainder of this paper is structured as follows.
In §II the governing equations of each term of the double-
parameter expansion which allows the acoustic receptiv-
ity problem to be modeled are presented. The numeri-
cal methods employed to solve each system of equations
are described in §III. The receptivity amplitude and ef-
ficiency function are defined in §IV, while §V makes a
comparison between the time-harmonic LNS approach
and other theoretical, numerical and experimental works,
ultimately validating our approach. In §VI a Monte-
Carlo type uncertainty quantification analysis with two-
dimensional (2-D) randomly distributed surface rough-
ness is undertaken. Finally, in §VII we assess the effects
of the stochastic properties of distributed random rough-
ness on transition location. Lastly, conclusions are drawn
in §VIII.

II. GOVERNING EQUATIONS

Consider a flat plate and the coordinate system
(x∗, y∗, z∗) positioned at its leading edge. The x∗− and
z∗−axes denote the streamwise and spanwise directions
respectively, whilst the y∗−axis represents the normal
to the flat plate direction. The velocity components are
denoted ~v∗ = [u∗, v∗, w∗]T . Density, dynamic viscosity,
temperature and pressure are represented by ρ∗, µ∗, T ∗,
and p∗, respectively. Time is denoted t∗. Quantities are
nondimensionalized with the velocity and density at the
far-field, U∞, ρ∞, and the reference length scale L. The
equations governing a fluid flow around a body are the
Navier-Stokes (N-S) equations, to which the continuity
equation is added and presented here in nondimensional
incompressible form,

~∇ · ~v =0 , (1a)

∂~v

∂t
+
(
~v · ~∇

)
~v =−∇p+

1

R
∇2~v , (1b)

where R = U∞L/ν∞ is the Reynolds number with the
kinematic viscosity denoted by ν∞ = µ∞/ρ∞. Dimen-
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sional quantities are represented with a ∗ superscript and
far-field quantities with an ∞ subscript.

A. Flow Decomposition

We now consider a plane acoustic wave traveling in
the free-stream direction and the presence of a local-
ized or distributed roughness element in the flat plate.
Both the acoustic wave amplitude and the roughness
element height are considered small enough such that
the disturbances can be treated as small perturbations
to the base flow. Consequently, a small parameter can
be defined as εw = h∗/L << 1, where h∗ is the maxi-
mum height or depth of the surface roughness. Similarly,
εa = u∗ac/U∞ << 1 is defined, where u∗ac is the maxi-
mum streamwise velocity perturbation in the freestream
caused by the plane acoustic wave. A truncated double-
parameter expansion is then introduced17,48,

φ(x, y, z, t) ≈φ̄(x, y) + εwφ̂w(x, y)eiβz + εaφa(x, y)e−iωt

+ εwεaφ̂c(x, y)ei(−ωt+βz) ,

(2)

where φ = [u, v, w, p]T , φw = φ̂w(x, y)eiβz and φc =

φ̂c(x, y)ei(−ωt+βz); with β representing the spanwise pe-
riodic dependence of the disturbances and surface rough-
ness. The hat symbol generally denotes the Fourier com-
ponent amplitude. The steady base flow φ̄ is consid-
ered strictly two-dimensional since our focus here is on
the unswept flat plate problem. The steady perturbation
term of order O(εw) results from the presence of either
2-D or 3-D surface roughness while the unsteady per-
turbation term of order O(εa) derives from the presence
of a 2-D acoustic wave in the free-stream. The highest
order term results from the non-linear coupling between
the two previous flow perturbation terms and therefore
physically represents, in general, 3-D oblique T-S waves
which are the focus of this paper. Contribution from
terms of higher order provide weaker corrections to the
T-S wave19 and are ignored in the present work. Fourier
series decompositions are used in the spanwise direction
and in time, effectively limiting the analysis to a single
angular frequency and spanwise disturbance (ω, β).

The decomposition of the flow solution in these four
terms is only possible because of the small perturbation
assumption. The boundary conditions are transferred to
the wall with a Taylor expansion, yielding

~̄v(x, 0) = 0 ,

~̂vw(x, 0) = −Ĥ(x)
∂~̄v

∂y
|y=0 ,

~va(x, 0) = 0 ,

~̂vc(x, 0) = −Ĥ(x)
∂~va
∂y
|y=0 ,

(3)

where Ĥ(x)eiβz is the Fourier component of spanwise

wavenumber β of the normalized function H(x, z) repre-
senting the roughness shape.

B. Unsteady Boundary Layer Equations

In the absence of surface roughness, the flow is gov-
erned to leading order by the incompressible unsteady
boundary layer equations49:

∂u∗

∂x∗
+
∂v∗

∂y∗
= 0 , (4a)

ρ∗
(
∂u∗

∂t∗
+ u∗

∂u∗

∂x∗
+ v∗

∂u∗

∂y∗

)
= −∂p

∗

∂x∗
+ µ∗

∂2u∗

∂y∗2
, (4b)

∂p∗

∂y∗
= 0 . (4c)

We introduce the change of coordinates

η =

(
U∞ρ∞
µ∞x∗

)1/2

y∗ , x =
x∗

L
, t = t∗

U∞
L

, (5)

and the unsteady stream function

ψ =

(
µ∞U∞x

∗

ρ∞

)1/2

f(η, x, t) , (6)

where

∂ψ

∂y∗
= u∗ = U∞fη , (7)

and thus to satisfy the continuity equation

∂ψ

∂x∗
= −v∗ = U∞

(
µ∞

x∗U∞ρ∞

) 1
2
(

1

2
(f − ηfη) + x∗fx∗

)
.

(8)

Using Eqs. (7) and (8) and taking into account the
change of variables in Eq. (5), the unsteady x-momentum
Eq. (4b) becomes

fηηη +
fηηf

2
= x

(
fηt + fηfηx − fxfηη +

dp

dx

)
, (9)

The boundary conditions are written as,

fη(0, x) = 0 , f(0, x) = 0 , fη(η →∞, x) = 1 + εae
−iωt .

(10)
The acoustic wave traveling in the free-stream mani-

fests itself through the boundary condition as η → ∞
and a pressure gradient. These are discussed next.

1. Acoustic Perturbation

We consider a plane acoustic wave traveling in the
free-stream as a fluctuation of the unperturbed uniform
steady flow,

ũ∗e = U∞ + εau
∗
e , ρ̃

∗
e = ρ∞ + εaρ

∗
e ,

p̃∗e = p∞ + εap
∗
e , T̃ ∗e = T∞ + εaT

∗
e ,

(11)
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where the acoustic fluctuations have the waveform

φ∗e = {u∗e, ρ∗e, p∗e, T ∗e } = φ̂∗ee
i(−ω∗t∗+α∗x∗) , (12)

with α∗ the streamwise wavenumber; the subscript e de-
notes the edge of the boundary layer. The freestream
acoustic wave solution50? can be expressed as

û∗e = U∞ ,

ρ̂∗e = ρ∞M∞ ,

p̂∗e = p∞γM∞ ,

T̂ ∗e = T∞ (γ − 1)M∞ ,

(13)

with M∞ the far-field Mach number and γ the specific
heat ratio. The streamwise wavenumber assumes the
form

α∗ =
ω∗M∞

U∞(M∞ + 1)
, (14)

if we select the downstream propagating wave. The pen-
etration of the acoustic wave in the boundary layer is
made through pressure oscillations. Special attention is
required to calculate the nondimensional pressure gradi-
ent perturbation

∂pe
∂x

=
iω

(M∞ + 1)
ei(−ωt+αx) , (15)

which in the incompressible limit reduces to

∂pe
∂x

= iωe−iωt . (16)

The acoustic perturbation of order O(εa) is governed
by the fully elliptic linearized Navier-Stokes equations.
An alternative and simpler model, though still quite ac-
curate, is based on the LUBLE, where the unsteady pres-
sure gradient perturbation in the wall-normal direction is
neglected9. Similar to Prandtl’s boundary-layer concept
of invariance of the pressure field across the boundary-
layer, coupled with the assumption of the streamwise
diffusion terms being negligible, the LUBLE set can be
solved by an efficient parabolic streamwise marching pro-
cedure. This is the approach utilized by us, hence an
expansion of the unsteady flow variable f(η, x) into a
steady B(η, x) and perturbed unsteady form fa(η, x) is
thus considered,

f(η, x, t) = B(η, x) + εafa(η, x)e−iωt , (17)

which after substitution in Eq. (9) yields to leading order,

Bηηη +
BηηB

2
= x

(
BηBηx −BηηBx +

dP

dx

)
, (18)

and to order O(εa),

∂3fa
∂η3

+
Bηη

2
fa +

B

2

∂2fa
∂η2

=

x

[
iωB +Bη

∂2fa
∂η∂x

−Bηη
∂fa
∂x

+Bηx
∂fa
∂η
−Bx

∂2fa
∂η2

]
,

(19)

with

B = 1− ∂fa
∂η

,

where the steady pressure gradient is given by dP/dx to
leading order, and by Eq. (16) to order O(εa). Equation
(18) reduces to the well-known Blasius equation for a
zero-pressure gradient driven flow (dP/dx = 0), since
self-similarity holds Bηx = Bx = 0. Upon performing
these simplifications, Eq. (19) is equivalent to Eq. (2.17)
of Ackerberg and Phillips’ work? and is the equation
defining the LUBLE. The unsteady boundary conditions
are written as,

fa(0, x) = 0 ,
∂fa
∂η

(0, x) = 0

∂fa
∂η

(η →∞, x) = 1 ,

(20)

which satisfy the no-slip condition at the wall and the
acoustic wave solution in the free-stream.

In the downstream limit x → ∞, Eq. (19) has a well
known double-layer asymptotic solution that is invariant
with the streamwise coordinate, which to leading order?

is given by

ua = 1− exp

[
i
3
2

(
ω∗x∗

U∞

) 1
2

η

]
, (21)

and represents the so-called Stokes shear-wave layer. In
our work, we solve Eq. (19) directly using a space march-
ing finite difference method, and use the above expression
merely as a guide to confirm correctness of our equivalent
non-parallel numerically computed acoustic solution.

2. Numerical Solution of LUBLE

We solve Eqs. (18) and (19) to second-order accuracy,
using upwind finite differences in x with the η-direction
discretized using the fully implicit Keller-box method51.
The steady Blasius state being nonlinear, involves New-
ton iterations, while the LUBLE being linear in fa can be
solved directly once the steady Blasius solution converges
at each x-spatial location during the parabolic numeri-
cal marching procedure. Both the Blasius and LUBLE
discretizations involve solution of block tridiagonal ma-
trices, which can be accomplished very efficiently using
standard LU decomposition. The computational over-
head of solving the Blasius and LUBLE equations is neg-
ligible compared to the LNS solve steps that we next
describe.

C. Steady Mean Flow Distortion Due to Roughness

We consider the presence of a localized roughness ele-
ment or distributed roughness strip on the flat plate in
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the absence of the acoustic wave. The roughness shape is
described by H(x, z) while Ĥ(x)eiβz is its Fourier decom-
position in the spanwise direction. The small parameter
εw satisfies εw = h∗/L << 1 such that the flow solu-
tion can be interpreted as a small perturbation to the
base flow varying linearly with εw. In these conditions,
the governing equations are the steady linearized Navier-
Stokes equations. This set of equations is obtained by
substituting,

φ(x, y, z) ≈ φ̄(x, y) + εwφw(x, y, z) , (22)

in Eqs. (1a) and (1b) and linearizing around the base
flow, yielding,

~∇ · ~vw = 0 , (23a)(
~̄v · ~∇

)
~vw +

(
~vw · ~∇

)
~̄v = −∇pw +

1

R
∇2~vw , (23b)

where ~̄v = [ū, v̄, w̄] and ∂/∂t = 0.
The boundary conditions are written as,

φ̂w(x, y →∞) = 0 ,

~̂vw(x, 0) = −Ĥ(x)
∂~̄v

∂y
|y=0 .

(24)

The no-slip condition is satisfied at the wall. In the
freestream the flow solution tends towards its unper-
turbed state.

D. T-S Wave Generation

The highest order term in the double-parameter ex-
pansion of Eq. (2) models the viscous instability arising
from the non-linear interaction between the steady and
acoustic unsteady perturbations as well as from the de-
formation of the Stokes layer. Through the substitution
of Eq. (2) in Eqs. (1a) and (1b) and equating the terms
of order O(εwεa) to zero, the governing equations for de-
termination of the T-S disturbance generation and sub-
sequent evolution are thus of the form,

~∇ · ~vc = 0 , (25a)

∂~vc
∂t
−
(
~̄v · ~∇

)
~vc −

(
~vc · ~∇

)
~̄v −∇pc +

1

R
∇2~vc =(

~vw · ~∇
)
~va +

(
~va · ~∇

)
~vw .

(25b)

The right-hand side (rhs) forcing terms represent the
interaction between the steady mean flow distorted field
(Eq. (23)) and the unsteady acoustic perturbations de-
rived from solving Eq. (19); explicit expressions are de-
tailed in the Appendix. The deformation of the Stokes
layer is caused by the presence of the roughness feature
and it is mathematically described by the boundary con-
ditions,

φ̂c(x, y →∞) = 0 ,

~̂vc(x, 0) = −Ĥ(x)
∂~va
∂y
|y=0 .

(26)

These wall conditions are found through harmonic bal-
ance. In the freestream, far from the surface boundary-
layer, the T-S perturbation is assumed to vanish.

III. NUMERICAL APPROACH

Solution of the roughness-induced steady mean flow
distortion given by Eq. (23) and subsequent T-S distur-
bance given by Eq. (25) are accomplished with the same
numerical scheme, since the two equation sets have nearly
identical form and are of elliptic type.

The wall normal derivatives of the harmonic LNS
(see Appendix) are discretized with pseudo-spectral (PS)
resolution. The streamwise spatial derivatives are dis-
cretized using 4th-order accurate central differences, with
non-centered stencils used at the inflow and outflow
boundary-points to preserve accuracy. Discretization ul-
timately yields a large penta-diagonal banded complex
matrix inversion problem of the generic form [L] q̃ = r̃;
here q̃ is the solution vector for all points in the field
and the r̃ vector arises from surface boundary condi-
tions to be satisfied or the coupled wall-acoustic field
forcing terms (i.e rhs terms of Eq. (25b)). Dimensions
of [L] are 4NyNx × 4Ny(p + 1), with p representing ac-
curacy order of finite differences (FDs), Ny number of
spectral elements and Nx number of streamwise points.
Higher order (p = 6, 8) finite differences are also possi-
ble, but the band-width of the matrices increases thus
impacting the LU block factorization CPU time, which
increases linearly with Nx and quadratically with band-
width 4Ny(p + 1) increments. The LU decomposition
is based on a partially parallelized version of Doolittle’s
algorithm (OpenMP shared-memory constructs). The
work reported in this paper essentially extends Mughal’s
work48,52 on development of the harmonic compressible
LNS solver.

In the computations we used up to Nx = 12000 points
in the streamwise direction and Ny = 56 PS polynomi-
als. For a specific test case, the inflow plane is located
sufficiently far upstream of the roughness such that the
perturbations can be considered to be zero there. The
outflow plane is positioned downstream of the receptiv-
ity region in order to capture the linear growth of the
generated T-S wave to allow accurate receptivity ampli-
tude determination; the outflow boundary conditions are
based on the PSE radiation condition

∂φ̂c
∂x

= iαpφ̂c , (27)

where αp is the local streamwise wavenumber computed
through a linear PSE computation. Results are checked
for convergence with grid refinement and with the posi-
tion of the inflow and outflow planes.

The efficiency of the technique reported in this paper,
which allows the Monte-Carlo UQ analysis to be feasible
is based on the crucial observation that the LU decom-
position step (the most CPU intensive part of the com-
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putation) need only be undertaken once for a prescribed
frequency ω and spanwise wavenumber β. With the LU
factorization stored in memory, the back-substitutions
to solve for parametric variation of the r̃ fields can be
accomplished very quickly. Majority of the CPU time
(∼ 95%) is used in performing the LU decomposition
while the back-solve for a given r̃ vector field is relatively
rapid. This was exploited by Mughal & Ashworth47 in
their development of the UQ based methodology to pro-
vide variance estimates of the most likely transition loca-
tion in roughness induced crossflow instability in swept
wing flows.

In this paper we use the same strategy, but two LNS
solve steps are necessary due to (1) wall roughness ~qw
deformation with ω = 0 and (2) subsequent acoustic-
roughness forced LNS solve with ω 6= 0, to give the ~qTS
T-S disturbance. This is summarized as follows:

~L1(Q̄;β, ω = 0)~qw = ~rw → [L] [U ]1 ~qw = ~rw

~L2(Q̄;β, ω)~qTS = ~raw → [L] [U ]2 ~qTS = ~raw.
(28)

In the above ~L matrix dependence on the steady base
flow Q̄, acoustic frequency ω and spanwise wavenumber
β is explicitly stated for elucidation purposes. Hence
two LU factorizations [L] [U ]1 and [L] [U ]2 require stor-
age in memory; subsequent LU factorizations need only
be re-computed for a change in ω or β. On availability of
the pre-computed LU factorizations held in memory, the
acoustic UQ analysis discussed in this paper may then be
undertaken relatively efficiently. Thus, analysis begins
firstly by the free-stream acoustic solution (see §II B 2)
via the LUBLE for a prescribed ω followed by compu-
tation of [L] [U ]1 and [L] [U ]2. Finally, for a roughness

field Ĥ(x) prescription the rhs ~rw vector is constructed,
~qw solved for and then used in evaluating the ~raw vec-
tor; solution of ~qTS then follows. This may then be re-
peated multiple times with a new Ĥ(x) prescription lead-
ing through to the ~qTS T-S disturbance evaluation; due to
availability of the pre-computed LU factorizations, over-
head incurred in the solve steps for multiple realizations
of the (~qw, ~raw) vectors is thus reduced dramatically.

IV. RECEPTIVITY AMPLITUDE

Receptivity amplitudes are usually expressed in terms
of the equivalent amplitude at the lower-branch of neu-
tral stability. This form of presenting the results favors
comparability between different approaches and results
published in the literature. In this paper we focus on the
streamwise velocity disturbance relative to the amplitude
of the acoustic wave in the free-stream (uac = εa),

uTS
uac

= εwûc(x, y) . (29)

The linear evolution of the maximum amplitude across
the boundary layer with streamwise position x as the

disturbance convects is defined by

A(x) = max
y

( |uTS(y;x)|
uac

)
1

εw
. (30)

Regardless of the evaluated quantity, the numerical so-
lution is very complex in the near field of the surface
roughness feature causing difficulties in estimating the
true amplitude of the linear T-S disturbance there. How-
ever, downstream of the roughness receptivity region the
emergent T-S wave dominates the solution while other
non-modal components are damped until they disap-
pear entirely. Therefore, our strategy to extract the T-S
wave amplitude at the lower branch of stability is to use
a solution of the linear parabolized stability equations
(PSE)22,53 matched near the second-branch of neutral
stability with the more correct linear Navier-Stokes pre-
diction. This then allows an accurate determination of
the T-S amplitude, i.e.

A0 =
A

e
−
(∫ x

x0
Im(α)dξ

) , (31)

where x0 is the position where we wish to determine the
equivalent T-S wave amplitude. This is often at the neu-
tral stability point or at the surface roughness location.
The growth rate Im(α) derives from the imaginary part
of the complex wavenumber α of the T-S wave. In cases
where the PSE lack the desired accuracy when compared
to the linear-growth predicted by the LNS equations, the
latter may be used to generate the linear-growth curve
with one extra computation for each frequency. A local-
ized receptivity mechanism positioned upstream of the
first-branch of stability is used in this case. This is more
costly though and is only used when required.

Goldstein10 first pointed out that in quasi-parallel re-
ceptivity analysis the amplitude of the generated T-S
waves could be decoupled from the geometry of the wall
feature. Following Choudhari17 it can be written,

uTS
uac

= εwF (αTS , β) Λu(ω, β, xr)E(y)ei
∫ x
xr
αdξ , (32)

where F (α, β) is the Fourier transform of the wall fea-
ture, Λu(ω, β, xr) is the efficiency function, E(y) is the
normalized eigenfunction such that it is unitary at its
maximum, and αTS is the complex T-S streamwise
wavenumber at the center of the roughness element xr.
The receptivity amplitude then follows:

A0 = |F | (αTS , β) |Λu|(ω, β, xr) , (33)

and thus allows the efficiency function to be evaluated.
Note that because we are working under a non-parallel
flow assumption, we need to make sure that the results
converge when reducing the width of the roughness ele-
ment. Non-parallel adjoint approaches typically compute
this quantity in the limit of an infinitely thin roughness
element34,54.
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For a given combination of free-stream disturbance and
wall-inhomogeneity, the efficiency function provides a re-
ceptivity measurement that is independent of the local
geometry, which thus makes this an appealing measure.
Once this has been computed for a set of frequencies
of interest, one can instantaneously predict receptivity
amplitudes in the presence of localized and distributed
roughness with any form, as proposed and discussed by
Choudhari17,18,54. In the framework of our LNS solver,
an efficient computation of the efficiency function can be
achieved by storing the LU decomposition in memory, as
discussed in Sec. III. Seeing as the LU factorization is the
most time-consuming operation, the total computational
time to determine the efficiency function for a single fre-
quency and a range of positions xr can be considerably
brought down by performing this step only once. Each
roughness configuration then requires a forward and back
substitution to obtain the final solution.

V. APPLICATIONS

In this section we compare the results from the time-
harmonic linearized Navier-Stokes approach with other
theoretical, experimental and numerical results in the
literature. The quite exhaustive checks are used to con-
firm the correctness of our approach. We then proceed
in §VI to investigate acoustic receptivity in the presence
of two-dimensional randomly distributed surface rough-
ness fields and quantify the variance arising in recep-
tivity amplitudes. In §VII we demonstrate how the
described method may be used to provide quantitative
guidance and estimates of the variance in transition lo-
cation, which naturally arises due to uncertainties in the
surface roughness distribution which must exist on real
surfaces.

Before we attempt a comparison with other ap-
proaches, however, let us first compare the Stokes shear-
layer solution obtained with the linearized boundary
layer equations against the first-order asymptotic so-
lution in Eq. (21). In Figure 1 we plot the stream-
wise velocity acoustic perturbation across the boundary
layer at different streamwise coordinates. It is shown
that near the leading edge, where the Strouhal number
S = x∗ω∗/U∞ is low, our solution is significantly different
than the asymptotic solution for high Strouhal number
(as would be expected) and that the two converge further
downstream.

A. Saric’s Experiment

Saric’s flat plate acoustic receptivity experiments24

consisted of a plane acoustic wave traveling in the stream-
wise direction and rectangular roughness elements of
varying heights placed at a fixed position to generate
T-S disturbances of varying magnitude. The rectangular
roughness is built with thin Mylar tape placed across the
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Figure 1. Comparison between linearized boundary layer
solver (symbols) and first-order asymptotic solution for high
Strouhal number (solid line) for increasing Strouhal numbers
S = {0.5, 5, 20}.

span of a high aspect ratio zero pressure gradient plate.
The far-field uniform flow has velocity U∞ = 12.75m/s
and kinematic viscosity ν∞ = 16.84 × 10−6m2/s. The
nondimensional frequency of the acoustic wave is set at
F = 2πfν∞/U

2
∞ = 49.34 × 10−6, where f is the dimen-

sional frequency in Hz. The center of the rectangular
element is positioned at a distance from the leading edge

where the Reynolds number Rδ =
(
U∞x

∗

ν∞

)1/2
= 582,

whereas the T-S wave amplitude is measured at Rδ =
1121 (near the second branch of stability). The measure-
ment is taken at a fixed distance from the wall, namely
where the condition ū∗(y∗M )/U∞ = 0.3 is satisfied.

The height of the rectangular element is initially 45µm
and is incremented by the same amount to a maximum
of 315µm. The width is kept fixed at 25mm. Two sound
pressure levels of the acoustic wave traveling in the free-
stream are tested - 90dB and 100dB. These conditions
were reproduced with the methodology presented in Sec-
tions II, III and IV. The ratio between the amplitude of
the T-S wave and the acoustic wave |uTS |/uac measured
at y∗M is shown in Figure 2 against the roughness height
h∗. The figure compares results from our method against
Saric’s experiment24, Choudhari et al.17 and Crouch’s19

quasi-parallel theory. Very good agreement is found be-
tween the LNS approach, experiment and local theory, in-
dicating that non-parallel effects are negligible. As men-
tioned by Choudhari & Streett17, the fact that the exper-
imental results for 90dB and 100dB don’t agree over the
linear regime may be explained by the presence of a T-S
wave originating at the leading edge in the absence of the
rectangular roughness element. After a certain critical
height h∗ > 200 the phenomena becomes non-linear due
to separation of the flow behind the rectangular bump.
The experiments for 90dB and 100dB also don’t agree
on the critical height leading to a non-linear response, it
being lower for the 100dB acoustic wave amplitude.
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Figure 2. Comparison of Saric’s experiment (symbols)
with quasi-parallel and non-parallel theories. Solid line -
Quasi-parallel theory (Crouch19 and Choudhari & Streett17);
Dashed line - LNS; Triangles - 100 dB; Circles - 90 dB

Table I. Receptivity amplitude grid refinement results for
h∗ = 300µm.

Ny = 56, Nx 1000 1500 2500 5000 7000 10000
|uTS|/uac 64.89 34.45 34.28 34.39 34.50 34.50

Nx = 7000, Ny 15 20 30 40 50 56 65
|uTS|/uac 36.96 35.39 34.48 34.57 34.52 34.50 34.51

The LNS computations were performed with 56 Cheby-
shev polynomials in the wall-normal direction, 7000
points in the streamwise direction, and a domain range
Rδ = 423 to Rδ = 1197. In table I we present the re-
sults of a grid refinement study. For a fixed value of
Chebyshev polynomials Ny = 56, the receptivity ampli-
tude varies 0.3% between Nx = 5000 and Nx = 10000.
Conversely, when Nx = 7000 the receptivity amplitude
varies 0.1% between Ny = 40 and Ny = 65. Therefore
we conclude that Nx = 7000, Ny = 56 constitutes an ad-
equate choice of grid parameters. We have used very fine
grids throughout this work since the computations are
not time-consuming. In addition, it allows us to dispel
any suspicion that the results might not be converged. In
this test-case, for example, there are approximately 200
streamwise points per T-S wavelength. Typically, for a
4th-order accurate finite difference scheme, only 20 points
per T-S wavelength are required. In general, a more ex-
acting criterion is to adequately resolve all surface rough-
ness scales. Clearly, for Nx = 1000 the rectangular bump
is under-resolved, indicating that this value is near the
minimum of points required to obtain an accurate solu-
tion for this particular application.

Figure 3. T-S wave development: receptivity and linear
growth (A with εw = 1 against x∗/c, where c is the chord
of the flat plate). Solid line - LNS. Dashed line - PSE.
Rδ = 1050, F = 5× 10−5.

B. Localized Receptivity

A more detailed validation of our work is accom-
plished through the calculation of the efficiency function
Λu. All computations used a rectangular-shaped bump
with constant height h∗ = 1µm. The Fourier transform
of a rectangular-shaped roughness element placed at a
streamwise position Rδ can be written as,

F (α) =
1

α

√
2

π
sin

(
αd

2

)
, (34)

where d is the width of the bump. The receptivity ampli-
tude at the center of the roughness element is obtained
through Eqs. (30) and (31) using the displacement thick-
ness δdisp of the boundary layer, at the streamwise po-
sition Rδ, as the reference length scale. The efficiency
function is then computed with Eq. (33). Results were
confirmed to be geometry independent to the desired pre-
cision by studying convergence of the results with de-
creasing width, while numerical independence was en-
sured with 56 Chebyshev polynomials in the wall-normal
direction and 10000 points in the streamwise direction.
A typical result of the LNS and linear PSE computation
is shown in Figure 3; this also illustrates and confirms
the excellent accuracy and thus adequacy of using the
PSE based matching procedure to extract the equivalent
T-S disturbance amplitude at an upstream position via
Eq. (31), as described in §IV.

The LNS computed efficiency function is presented in
Figure 4 and compared with results published by Choud-
hari & Streett’s FRNT17 and Ruban-Goldstein’s asymp-
totic theory10,11. Overall good agreement is found be-
tween the LNS approach and the FRNT quasi-parallel
theory. Non-parallel effects are mostly felt at high fre-
quencies for Rδ = 1050 and at high Reynolds number
(Rδ > 1300) for both F = 20× 10−6 and F = 25× 10−6.
These are confirmed to be qualitatively correct by com-
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Figure 4. Efficiency function comparison between three dif-
ferent approaches: asymptotic approach, Choudhari et al.
quasi-parallel theory and LNS. In figure (a) the asymptotic
approach is presented in dashed lines, Choudhari et al. in
solid lines and LNS in symbols (Rδ = 1050 - downward fac-
ing triangles, Rδ = 700 - circles, Rδ = 350 - upward facing
triangles). In figure (b) Choudhari et al. is presented in lines
(F = 20× 10−6 - solid line, F = 25× 10−6 - dashed line) and
LNS in symbols (F = 20 × 10−6 - circles, F = 25 × 10−6 -
triangles).

paring the complex wavenumber of the normal mode cal-
culated through the PSE and the Orr-Sommerfeld equa-
tion in Figure 5 for F = 25 × 10−6. Crouch drew the
analogue of receptivity as a resonance phenomena of a
very complex oscillator20. It is known that detuning of
the growth rate of the normal mode from the ideal con-
dition αi = 0 has usually a greater impact on the recep-
tivity amplitude and therefore the efficiency function19.
This is in agreement with what is observed here: the
non-parallel results based on the PSE show that above
Rδ = 1300 higher growth rates than what is predicted
by local theory arise, thus detuning it even further from
the ideal resonance condition and therefore leading to
a decrease in the efficiency function. This is precisely
what is observed in Figure 4, for Reynolds number in ex-
cess of 1300. Near the leading edge, i.e. at low values
of Rδ < 400, non-parallel effects are surprisingly small.
This may be due to the fact that though the LNS anal-

Figure 5. Dimensional wavelength and growth rates of the
normal mode from linear stability theory (F = 25 × 10−6).
Comparison of PSE (solid line) and Orr-Sommerfeld equation
(dashed line).

ysis takes into account both the non-parallel effects on
receptivity and on linear growth, they must either coun-
teract each other38 or be weak enough for FRNT to be
still valid.

This comparison has allowed us to validate the time-
harmonic LNS approach and we have proven that it pre-
dicts the efficiency function accurately, taking into ac-
count the non-parallel effects neglected by quasi-parallel
theories. At most Reynolds number and frequency pa-
rameter F , the agreement with FRNT is remarkably
good, though at some (Rδ, F ) conditions, differences as
high as approximately 10% do arise.

C. Non-localized Receptivity

The time-harmonic LNS formulation is now tested in
the presence of distributed roughness. The simplest type
is a single-wavelength wavy wall which is historically also
the first to have been studied from theoretical18,20,25 (us-
ing quasi-parallel FRNT and asymptotic theory) and ex-
perimental viewpoints. Crouch & Bertolotti21 later ex-
tended the quasi-parallel theory to investigate oblique
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T-S waves. The wavy wall is described by

H = ei(α
∗
wx
∗+β∗wz

∗) , (35)

where α∗w and β∗w are the dimensional streamwise and
spanwise wavenumbers. Following Crouch20, we evaluate
the quantity A0 at the first-branch of stability defined by
Eq. (31), with L = Rfν∞/U∞, where Rf = 1000. Since
uTS is known to scale linearly with the wall roughness
height, this result is amplitude-independent. The wall
wavenumbers are also nondimensionalized with the same
reference scale,

αw = α∗wL, βw = β∗wL . (36)

Figure 6. T-S wave evolution for β = 0.1, αw = 0.170, and
F = 56 × 10−6. Red line - waviness extends from Rδ = 220
to Rδ = 1300. Black line - a localized receptivity mechanism
was placed at Rδ = 220 and the curve was matched with the
red curve at the second branch of stability.

The grid used 12000 points in the streamwise direc-
tion and 56 Chebyshev polynomials in the wall-normal
direction. The computational domain extends from the
leading edge to Rδ = 1400. The wall waviness extends
from Rδ = 220 to Rδ = 1300. Crouch19 found that
receptiveness is maximized around the lower-branch of
stability and rapidly diminishes with streamwise extent
away from this point; i.e. the energy transmission from
the forced mode to the eigenmode quickly decreases to
zero as the detuning from the resonance conditions in-
creases away from the neutral point. Therefore, after
a certain distance, the fully developed growing in am-
plitude T-S disturbance no-longer feels the presence of
the wavy wall forcing and continues its development ac-
cording to linear eigenmode theory. This is illustrated in
Figure 6. The perturbation, in red, becomes a pure T-S
wave at approximately Rδ = 900 in spite of the presence
of waviness until Rδ = 1300. The equivalent amplitude
A0 is measured at the lower-branch of neutral stability
through the black curve.

The T-S wave amplitudes for F = 56×10−6 and vary-
ing wall waviness wavelength are presented in Figure 7.

Comparisons are made with Crouch’s quasi-parallel the-
ory both for two and three-dimensional disturbances20,21.
Additionally, results from the multiple-scales non-parallel
two-dimensional disturbance analysis of Zuccher31 are
presented. This allows us to confirm and contrast the
more exact and flexible LNS modeling capability investi-
gated by us with the multiple-scales based results.
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Figure 7. Wavy wall receptivity amplitudes as a function of
the streamwise wall wavenumber for β = 0.0 (dashed line -
Crouch’s quasi-parallel theory20 - , solid line - Order one mul-
tiple scales approach31, symbols - LNS) and β = 0.1 (dashed
line - Crouch et al. quasi-parallel theory21 - and symbols -
LNS) (F = 56× 10−6).

As alluded to already, receptivity is at its core a res-
onance phenomena between the external forcing and a
very complicated oscillator. The wavy wall test case il-
lustrates this quite well. Only in a short interval of wave-
lengths is the wall waviness effective in generating T-S
disturbances. The T-S amplitudes quickly decrease to
zero away from this optimal region. For a given acous-
tic frequency, this most receptive band of wavelengths
is determined by the characteristics of the correspond-
ing eigenmode, which can be obtained through spatial
stability analysis. Ideally one would have

αw = αrTS , α
i
TS = 0 , (37)

where the superscripts r and i stand for real and imagi-
nary parts respectively. However, because this is a non-
localized phenomenon and the T-S wavelength changes as
it convects, neither condition can be met at all stream-
wise coordinates. Non-satisfaction of the second condi-
tion is a more effective detuning mechanism and leads to
lower receptivity amplitudes20.

For the two-dimensional test case (β = 0) very good
agreement is found between the LNS approach and the
multiple scales approach. Discernible non-parallel ef-
fects can be noted when comparing with Crouch’s local
theory; a shift in most effective surface waviness wave-
length and an increase in amplitudes are observed. On
the other hand, the three-dimensional test case (β =
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0.1) reveals good agreement between the non-parallel
LNS theory and Crouch’s quasi-parallel theory. Crouch
& Bertolotti21 had reported that “linear-growth rates
of three-dimensional disturbances are more strongly af-
fected by non-parallelism.” As mentioned earlier, in con-
text of localized roughness, non-parallel effects quantified
by our LNS computations are the net contribution from
both the receptivity process and subsequent linear devel-
opment of the T-S disturbance. As such, it appears rea-
sonable to conclude that what we observe for the β = 0.1
oblique 3D-disturbance, is a near-perfect cancellation of
two contrary effects. The same may not happen however,
for all spanwise wavenumbers or for alternate steady base
flows.

Figure 8. Wavy wall receptivity amplitude as a function of
the detuning parameter σ = αw/αm− 1. Comparison of LNS
(triangles) with Wiegel & Wlezien’s experiment26 (squares),
FRNT theory of Choudhari18 (solid line) and Wu’s first-order
asymptotic theory25 (dashed line).

Experimental validation of Choudhari18 and Crouch20

FRNT-based wavy-wall predictions were undertaken by
Wiegel & Wlezien26. Wall waviness was reproduced
through a series of 40µm-thick polyester tape spaced
25.4mm apart (50.8mm center to center) up to a to-
tal of 13 strips. As seen in Figure 7, for a given fre-
quency there is a very narrow band of wall wavenumbers
for which resonance occurs and instabilities with non-
negligible amplitude appear. This property aided Wiegel
& Wlezien to use periodically placed rectangular rough-
ness shapes (the first Fourier component has a wave-
length of 50.8mm while the next harmonic is three times
smaller and therefore already sufficiently out of tune to be
neglected). The uniform free-stream speed was 12.5m/s
while a plane acoustic wave with a frequency of 80Hz
was forced. Although not explicitly stated in the original
work, Wu25 deduced from the data that the kinematic
viscosity, based on a temperature of about 25◦C, was
ν∞ = 1.546× 10−5m2s−1.

The 2-D wavy wall is described with Eq. (35), where
α∗w = (2π/0.0508) m−1. The dimensional amplitude of
the wavy wall is h∗ = (20 × 4/π) µm (half the height of

the rectangular tape strips times the Fourier series coef-
ficient). The LNS grid used 10000 points in the stream-
wise direction and 56 Chebyshev polynomials in the wall-
normal direction. Wall waviness was prescribed from
Rδ = 140 to Rδ = 1600, while the entire computational
domain extended from the leading edge to Rδ = 1800.
The evaluated quantity is A0/2. A factor of 1/2 appears
because we use a complex description of the wall waviness
instead of a real sinusoidal function.

A direct comparison of our computations with Wiegel
& Wlezien’s26 results is presented in Figure 8. Ampli-
tudes are plotted against the detuning parameter σ =
αw/αm−1, where αm corresponds to the wavenumber for
which the receptivity coefficient is maximal. First-order
asymptotic theory results of Wu25 and FRNT results of
Choudhari55 are also superimposed. Wu attempted a
second-order correction to his leading-order results, but
the corrections significantly over-predicted the receptiv-
ity amplitudes compared to FRNT and experiments (see
Figure 9 of Wu), and are thus not presented here. Wu
attributed this discrepancy to the possibility of small
mean flow pressure gradients in the experiment, which
would have resulted in significantly different N-factors,
not accounted for in Wiegel & Wlezien’s experiment post-
processing. The results obtained with the LNS approach
however indicate that this is not the case. Moreover, it is
observed that the non-parallel flow effects are small and
mostly felt for positive values of the detuning param-
eter, reaching approximately 10%. Overall, very good
agreement is found between the finite-Reynolds number
theory, LNS and the experiment.

Above, we have shown our proposed LNS approach
produces accurate results both for localized and non-
localized idealized wall roughness through comparisons
with theoretical, numerical and experimental works.
Having undertaken quite detailed validations of the new
approach described in this paper, we next consider the
more practical case of how we can incorporate and de-
velop a T-S receptivity method to account for the effects
of realistic rough surfaces, which have an element of ran-
domness in the roughness field description.

VI. DISTRIBUTED RANDOM ROUGHNESS

Wing manufacturing processes are inherently imper-
fect. Surfaces can never be smooth, possessing irregular-
ities over a wide range of wavelengths56. The height dis-
tribution in relation to a mean plane has been observed to
be a non-stationary random process56; therefore the vari-
ance of the height distribution is usually dependent on
the sample length. Moreover, the work of Majumdar &
Tien57 highlights that beyond a certain surface roughness
scale, surfaces may be characterized by self-similarity and
self-affinity properties related to fractal behavior, where
similar geometric patterns are found at different scales.

Predicting receptivity amplitudes in the presence of
random distributed roughness is a key step towards
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practical transition prediction on an otherwise assumed
smooth surface. The study of acoustic receptivity in the
presence of localized roughness and wavy walls can be
regarded as a cornerstone to understand the physics and
study of the more general problem of continuous and dis-
crete spectrum surface features. Choudhari18 addressed
this problem although he did not proceed to study any
particular roughness distributions. This was done for
stationary cross-flow instabilities over swept wings by
Mughal & Ashworth47 and Thomas et al.37 The former
work reconstructed the power spectral density (PSD)
of a painted panel and an unpainted aluminum plate
and showed that energy tends to be concentrated in the
small wavenumbers. To overcome the issues of random-
ness existing in the surface roughness field distribution
and spectral content description, Mughal & Ashworth47

used a Monte-Carlo (MC) based uncertainty quantifica-
tion analysis in their receptivity modeling. The premise,
which was verified, is that over a large number of sur-
face roughness realizations the receptivity amplitude will
converge to a mean value and will have an associated vari-
ance which ultimately leads to uncertainty in the transi-
tion location. In a real surface, the sources of uncertainty
are the variations in the PSD functions in different parts
of the surface and in relative phase of the different Fourier
components. However, to the best of our knowledge, no
equivalent studies have been conducted on the genera-
tion of Tollmien-Schlichting waves; T-S receptivity has
the added complication of uncertainties and randomness
existing in the freestream acoustic environment too. A
key motivation of this paper is to address and devise an
appropriate high-fidelity methodology to overcome this
current limitation in T-S induced transition modeling.

A. Surface Roughness Model

In this section we will focus on the two-dimensional
model,

H∗(x) = krms

Nmax∑
i=Nmin

aicos

(
2πix

λx
+ φi

)
, (38)

where ai follows a Gaussian distribution with mean

µi =

(
2πi

λx

)−k
, (39)

and standard deviation

σi =
kσµi

3
. (40)

The length of the roughness patch is denoted λx. A phase
φi for each mode is sampled uniformly from the interval
[−π, π]. The Fourier series is cut-off by low and high-pass
filters denoted Nmin and Nmax respectively. The low-pass
filter is determined by the maximum sample length (λs)
with which we can characterize the surface roughness –

Nmin = λx/λs. The high-pass filter is conditioned by the
finest scales relevant to the physical phenomenon under
study.

Each roughness spectral scale is attributed a random
amplitude ai. The mean PSD follows a power law, which
has been observed to be a good fit to natural random
roughness56–58. In particular, Van Deusen58 observed
a decay with the square of the angular frequency for
many different types of surfaces. Majumdar & Tien57

noted, however, that machined surfaces may present two
distinct behaviors throughout the spectrum: (i) a first
power law at low wavenumbers with a slope in a log-log
plot which is defined by the surface-processing technique,
(ii) followed by a second power law with a different slope
at the high-wavenumber end of the spectrum. The two
branches intersect at a so-called corner wavenumber. The
authors proposed that this wavenumber is determined by
the smallest scale at which the machine can effectively
process the surface. At finer scales the surface roughness
remains unprocessed. This aspect is not considered in
the present work.

In order to relate our power law coefficient k to previ-
ous works58 we first calculate the autocorrelation of our
model (φi = 0 for simplicity and kσ = 0),

R(τ) = lim
L→∞

1

L

∫ L

0

H(x)H(x+ τ)dx

=
k2rms

2

Nmax∑
i=Nmin

µ2
i cos

(
2πiτ

λx

)
.

(41)

The power spectrum then follows as the Fourier trans-
form of the autocorrelation function,

S(αw) =
k2rms

2

Nmax∑
i=Nmin

µ2
i δ(αw −

2πi

λx
) . (42)

The amplitudes of the discrete power spectrum of the
Fourier series behave with the same power law as its con-
tinuous approximation59. Therefore, to obtain the decay
with the square of the angular frequency found by Van
Deusen58 we must use k = 1.

The standard-deviation, in its turn, is tuned through
kσ, which represents the percentage around the mean
value in which 99.73% of all roughness realizations will
be contained. During a Monte-Carlo simulation, each re-
alization of the roughness field is kept at a constant root-
mean-square (r.m.s.) height through the scaling coeffi-
cient krms. This quantity has been observed to be nearly
constant in natural and artificial roughness surfaces57. It
depends, however, on the length of the considered sam-
ple. The r.m.s height is defined as,

h∗RMS =

√
1

λx

∫ λx

0

H∗2(x)dx . (43)

which coincides with the definition of standard-deviation
for a height distribution with a mean plane placed at
y = 0.
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Admittedly, this model lacks the properties of self-
similarity and self-affinity present in Majumdar & Tien’s
model57. On the other hand, unlike the Weierstrass-
Mandelbrot fractal function presented in their work, it
possesses the necessary spectral density to capture the re-
ceptivity phenomenon in the range of wavelengths which
are most likely to generate T-S disturbances.

B. Surface Roughness Characterization

Let us consider a roughness patch of length λx = 1.0
and a surface roughness sample of length λs = 0.1, with
the chord of the flat plate as a reference length scale.
The low-pass filter is then Nmin = 10 and we specify
Nmax = 1000, k = 1 and kσ = 0.0. The scaling parameter
krms is such that h∗RMS = 20µm. Figure 9 shows an exam-
ple of a roughness realization with this parametrization.
In Figure 10 we confirm that this model generates ran-
domized roughness with a height distribution which fol-
lows a Gaussian law to a good degree of approximation57.
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Figure 9. Example of a roughness patch.

When generating a large number of roughness patches
we observe that the mean plane is consistently positioned
at H∗ = 0.0 and that the variance of the height distribu-
tion is constant. This means that the r.m.s is constant
which is another observed property of natural and arti-
ficial roughness surfaces. Figure 11 presents an example
of the PSD, subject to uncertainties modeled through a
Gaussian distribution with an associated variance defined
by kσ = 0.5. In black we show the mean PSD decays with
the square of the wavenumber αw.

C. T-S Disturbance Generation

We next focus on the generation of two-dimensional T-
S waves in the presence of 2D random distributed rough-
ness following the aforementioned model. The global
Reynolds number based on chord and the root-mean-
square height were kept constant - R = 3.2 × 106,
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Figure 10. Normalized probability density function of the
height distribution of a roughness patch.

101 102 103 104

αw

10−15

10−14

10−13

10−12

10−11

10−10

S
(m

2
)

Figure 11. Example of a randomized PSD (in red) superim-
posed on the mean PSD (in black) - kσ = 0.5.

h∗RMS = 1µm. The low-pass filter is set atNmin = 10 with
a roughness patch extending through to 90% of the plate
length (λx = 0.9, x∗/c = x ∈ [0, 1]). Roughness strips
are arranged to start close to the leading edge of the flat
plate, within the stable regime of the neutral stability di-
agram, to ensure that the receptivity phenomenon is fully
captured. The dependence of the receptivity amplitudes
on the roughness strip length is well known to converge
to a constant value for a sufficiently long strip21,47. This
is discussed and confirmed in the wavy-wall test case of
§V C and related result shown in Figure 6.

All computations used 10000 points in the stream-
wise direction and 56 Chebyshev polynomials in the wall-
normal direction. The large point distribution thus en-
sured that all fine roughness scales (i.e. constrained by
Nmax) were resolved in the numerical discretization of
the simulated roughness field; ramifications of under-
resolving the roughness scales is discussed in some de-
tail by Thomas et al.37 Receptivity amplitudes are cal-
culated at the lower-branch of neutral stability according
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(a) Mean receptivity amplitude plotted against the iteration
number N

(b) Probability density function

Figure 12. Monte-Carlo simulation with parameters k = 1,
kσ = 0.0, Nmax = 500 and F = 56× 10−6.

to Eq. (31), where h∗ =
√

2h∗RMS is the amplitude of a
wavy wall for a given r.m.s height. The reference length
scale is L = Rfν∞/U∞, with Rf = 1000 to maintain
comparability with the wavy wall results. The minimum
wavenumber of the roughness grain sizes (wavelengths)
under this scaling is αmin = 0.0218.

Let us first consider an acoustic wave traveling in the
freestream with non-dimensional frequency F = 56 ×
10−6. The PSD is invariant (k = 1, kσ = 0.0) and the
high-pass filter is set at Nmax = 500. The maximum
wavenumber is then αmax = 1.091. The range of rough-
ness wavenumbers ensures that the relevant scales asso-
ciated with the analyzed acoustic wave frequencies are
present. Figure 12(a) shows the evolution of the mean
receptivity amplitude, µA0

= E[A0], against the num-
ber of random roughness realizations N . Convergence
towards a constant mean amplitude is confirmed. More-
over, observe that convergence is attained with approx-
imately 3000 roughness field realizations. Consequently,
in all subsequent computations the number of roughness
realizations is fixed at 3000. The corresponding proba-

bility density function is presented in Figure 12(b).

Figure 13. Mean receptivity amplitude against the low-pass
filter wavenumber - k = 1, kσ = 0.0, and F = 56× 10−6

Having verified the core premise of the uncertainty
quantification analysis technique, we next analyze the in-
fluence of the described parameter set. Firstly, we main-
tain the parametrization while increasing Nmax, thus in-
cluding finer and finer scales – results are shown in Fig-
ure 13. Since the acoustic frequency is kept constant, it
is well known that the range of wavenumbers for which
the resonance conditions are met is very narrow. Con-
sequently, when only large scales are present, the recep-
tivity amplitude is near-zero. As we start to include the
relevant scales in the random roughness, the amplitude
quickly increases, reaching a peak value and then de-
creasing mildly towards a constant value. The reason for
this decrease is that maintaining a constant roughness
r.m.s height, and therefore a constant forcing energy at
the surface, means that the broader the roughness spec-
trum is, the most effective roughness scales (from a res-
onance viewpoint) have reduced impact since the r.m.s
measure is shared more evenly over the roughness spec-
tral content. However, since the power density decays
very rapidly with the wavenumber (see Figure 11), an
almost negligible contribution arises from the very fine
scales.

The behavior with varying Nmin is predictable pro-
vided it is sufficiently low so as to include the rele-
vant scales for the receptivity phenomenon. For F =
56 × 10−6, it has to be lower than approximately 60 as
can be confirmed through Figure 13. If, however, it were
lower than the value we have used in this test case, we
would see a generalized decrease in T-S wave amplitudes
simply due to the fact that more of the irrelevant length
scales are assigned non-zero magnitude, leading to as-
signment of reduced roughness amplitudes to the more
effective roughness scales.

Thus far the analysis has shown that for a sufficiently
large number of roughness realizations we are capable of
finding a PDF for the T-S wave amplitude at the lower
branch of neutral stability with a well defined mean and
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variance. Moreover, we have observed that the aver-
age receptivity amplitude converges to a constant value
when increasing the parameter Nmax. In what follows
we investigate the effects of the non-dimensional fre-
quency F , the power law coefficient k and the power
law variance coefficient kσ. Frequency is varied in the
range [24, 80] × 10−6 while k = {0.75, 0.9, 1.0, 1.05} and
kσ = {0.0, 0.25, 0.50, 0.75}. The high-pass filter is kept
constant at Nmax = 500.

The variation of the mean receptivity amplitude and
variance with the non-dimensional frequency and the pa-
rameter k is presented in Figure 14. The mean receptiv-
ity amplitude is weakly dependent on the frequency of
the acoustic forcing. For k = 0.9 it is nearly constant.
For lower k values there is an increase in amplitude with
increasing frequency. Conversely, for steeper PSD’s, we
see a decrease of amplitudes with frequency. This can be
explained if we consider that for each acoustic wave fre-
quency, the most favorable wall roughness wavelengths
that are most effective in generating the T-S disturbance
are confined to a very narrow band (see §V C). Moreover,
these relevant scales become increasingly small with in-
creasing frequency. Figure 11 shows that these wavenum-
bers have less associated energy. Therefore, this effect
promotes a decrease in receptivity amplitude with the
acoustic forcing frequency. However, one must also con-
sider the efficiency of the receptivity process at each fre-
quency when all roughness scales have the same magni-
tude. The fact that for k = 0.75 we observe an increase
in amplitude indicates that the efficiency of the process
increases in this range of frequencies. It is only when
we impose a steeper decrease of energy density with the
wavenumber of the roughness (i.e. when we increase the
parameter k) that we see the first effect we described
dominating the general trend.

Secondly, we observe that the variance follows similar
trends and is comparable in value to the mean T-S wave
amplitude. This indicates that the 95% confidence in-
terval is very wide - see Figure 12(b). The disparity in
receptivity amplitudes at the first-branch of stability is
caused almost exclusively by differences in phase of each
component of the randomized roughness model. Since
the process is entirely linear, the resulting T-S wave can
be seen as the sum of the T-S waves emanating from each
wavy wall of wavenumber 2πi/λx. The relative phases of
the partial T-S waves will then either promote construc-
tive or destructive interference. This explains why a T-S
wave amplitude can go from near-zero to twice as much
as its average amplitude.

Lastly, we consider the effect of random variations in
the PSD. In Figure 15 the power law coefficient is fixed
to k = 0.75 and kσ = {0.0, 0.25, 0.50, 0.75}. We ob-
serve that the mean amplitude and the variance remain
nearly unchanged. Small variations arise but these can
be mostly attributed to statistical errors. These results
support the idea that the phase differences between each
wavy wall component of the random roughness largely
determine the PDF of the T-S wave amplitude.

(a) Mean receptivity amplitude

(b) Receptivity amplitude variance

Figure 14. Receptivity to different acoustic wave frequencies
and power spectral densities of the random distributed surface
roughness (Nmax = 500, kσ = 0.0). Squares - k = 0.75, Cir-
cles - k = 0.9, Downward facing triangles - k = 1.0, Upward
facing triangles - k = 1.05

VII. T-S WAVE GROWTH AND TRANSITION
LOCATION

Receptivity models such as the one presented in this
paper provide us with initial amplitudes of boundary
layer instabilities which subsequently undergo exponen-
tial growth. If these linear disturbances become suf-
ficiently large, they generate and interact with sub-
harmonics in a non-linear growth process. Eventually
the disturbances become of the order of the base flow
quantities, which leads to the generation of secondary
instabilities. Breakdown to transition should follow very
quickly22. This transition scenario is valid in a small
perturbation environment.

We next demonstrate, relying on the initial amplitudes
calculated in the previous section, how we can simu-
late T-S wave growth and also provide indications of the
likely variances to expect in the nonlinear breakdown po-
sition. For this we use the non-linear parabolized stabil-
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(a) Mean receptivity amplitude

(b) Receptivity amplitude variance

Figure 15. Receptivity to different acoustic wave frequencies
and power spectral densities of the random distributed surface
roughness (Nmax = 500, k = 0.75). Squares - kσ = 0.0,
Circles - kσ = 0.25, Downward facing triangles - kσ = 0.5,
Upward facing triangles - kσ = 0.75

ity equations (NLPSE)22,60. These equations are valid
until the instabilities become O(1), at which stage con-
vergence problems arise in the NLPSE’s numerics. We
assume that the point of numerical non-convergence her-
alds the onset of imminent breakdown to turbulence; we
define this as a good indicator of transition location.
Each frequency is treated independently, as if the acous-
tic disturbance spectrum in the freestream were domi-
nated by a single acoustic wave of frequency F . There-
fore the sub-harmonics generated during the NLPSE so-
lution evolution have a zero initial amplitude, and we
limit the NLPSE computations to self-generate only four
sub-harmonics. Using a larger number of sub-harmonics
has little effect on the results presented.

Hereafter we seek to assess the effect of the uncer-
tainty in the initial T-S wave amplitude on transition
location. We are aware that the non-linear process lead-
ing to breakdown into turbulence is ultimately a three-
dimensional phenomenon involving interaction between

the dominant T-S wave and three-dimensional modes –
examples include ’K-type’ and ’H-type transition22,61.
Accurately predicting this behavior would require using
a 3-D roughness model to obtain the initial amplitudes
of oblique modes or equivalent 3D acoustic forcing. We
restrict our analysis to two-dimensional disturbances for
the purpose of illustrating how the receptivity model can
be coupled with the NLPSE to predict breakdown into
turbulence.

The initial amplitude at the lower-branch of stability
is calculated according to

uTS =
εa
√

2h∗RMS

L
(µA0 + nσ) (44)

where n is an integer, σ =
√

Var(A0), and L =
Rfν∞/U∞ is the reference length scale; non-zero n al-
lows the effect of uncertainty to be quantifiable. In what
follows the unit Reynolds number is 658400, k = 1, and
kσ = 0.

Figure 16 presents the results for an acoustic wave am-
plitude εa = 1 × 10−4, roughness r.m.s. h∗RMS = 20µm,
and n = 0 (average receptivity amplitude). The dashed
vertical line marks the Reynolds number at which the
most unstable T-S wave reaches an amplitude of approx-
imately 10% of the freestream velocity – Rδ = 1834. At
this point the NLPSE computation breaks down. For
this particular scenario it corresponds to the frequency
F = 28× 10−6.

The envelope in Figure 16 also provides information as
to which roughness lengthscales should be suppressed, or
at least mitigated, in order to delay the onset of strongly
nonlinear instabilities. In this case lowering the initial
amplitudes of T-S disturbances with frequencies below
F = 28 × 10−6 could well delay the breakdown to tur-
bulence altogether. These T-S waves, in turn, are most
receptive to roughness with a wavenumber lower than
0.12 (long wavelengths).

Since the variance of the T-S wave initial amplitude
due to the stochastic nature of the roughness field is com-
parable to the its mean value, we re-perform the NLPSE
computations for n = −2 and n = 2. In Figure 17 we only
present the most dangerous frequency for each value of n.
When n = 2 receptivity amplitudes are at the high-end
of the PDF and naturally the instabilities become O(1)
further upstream (Rδ = 1725). The contrary effect is ob-
served when n = −2 (Rδ = 2300). The Reynolds num-
ber variation with respect to the mean value is greater
for the latter case, i.e. a relatively larger shift down-
stream in transition location arises for n = −2 variance,
while lesser sensitivity in the upstream transition location
movement is observed with the n = 2 variance. Note also
how the increase in initial amplitudes is directly linked
to an increase in frequency of the most dangerous mode.

If we consider that the boundary layer is being excited
by an acoustic field with a single frequency F = 28×10−6,
we can deduce from Figure 17 that transition should not
occur before Rδ = 1725. It can, however, occur further
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Figure 16. NLPSE simulation of T-S wave growth for εa = 1×
10−4, roughness r.m.s. h∗

RMS = 20µm. Frequencies ranging
from F = 20×10−6 to F = 34×10−6. Red curve corresponds
to F = 28×10−6, which is the first T-S wave to attain a near
10% amplitude.

Figure 17. NLPSE simulation of T-S wave growth for εa =
1× 10−4, roughness r.m.s. h∗

RMS = 20µm. From right to left
in the graph - n = {−2, 0, 2}. The corresponding frequencies
are F = {20, 28, 31} × 10−6.

downstream beyond Rδ > 2300. On average it should be
at Rδ = 1834. These variations would be caused solely
by the stochasticity of the roughness field.

In Figure 18 we present similar analysis with a
smoother roughness field. The r.m.s. was reduced by
a factor of 10. No curve for n = −2 is presented as none
of the acoustic wave frequencies excite a T-S wave that
attains an O(1) amplitude (within the computational
domain considered). Note how the transition Reynolds
numbers for n = {0, 2} move downstream relative to the
results presented in Figure 17.

Lastly, in Figure 19 the acoustic wave amplitude is
increased tenfold while maintaining the r.m.s. at its ref-
erence value h∗rms = 20µm. An overall increase in re-
ceptivity amplitudes clearly promotes earlier transition,
although other trends remain identical. The most dan-

Figure 18. NLPSE simulation of T-S wave growth for εa =
1 × 10−4, roughness r.m.s. h∗

RMS = 2µm. Solid line - n = 0
and F = 22× 10−6; Dashed line - n = 2 and F = 20× 10−6.

gerous frequencies grow with the initial T-S wave ampli-
tude – both for n = {−2, 0, 2} in Figure 19 and in relation
to Figure 17.

Figure 19. NLPSE simulation of T-S wave growth for εa =
1× 10−3, roughness r.m.s. h∗

RMS = 20µm. From right to left
in the graph - n = {−2, 0, 2}. The corresponding frequencies
are F = {24, 38, 44} × 10−6.

VIII. CONCLUSIONS

A numerically efficient and high-fidelity acoustic recep-
tivity method has been described and applied to model
the T-S disturbance generation process in the presence of
surface roughness. The time-harmonic approach, though
computer memory intensive, requires the inversion of a
large matrix which is considerably less computationally
expensive than time-stepping methods. It is therefore
more appropriate for incorporation in advanced opti-
mization tools of laminar flow wing analysis. All of the
results reported in this paper were computed on a stan-
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dalone multi-core computer. We have demonstrated the
basic approach on the Blasius flat plate model, and with
continued development the same methodology should be
applicable to more practical aerodynamic surfaces.

In incompressible flat plate analysis we have proven
that the method provides accurate predictions of re-
ceptivity amplitudes both for localized and distributed
roughness. The former is presented in the form of the
efficiency function, which is geometry-independent, and
the non-parallel effects are found to be lower than 10% in
the considered range of frequencies and Reynolds num-
bers. The latter is first compared against local FRNT
predictions for two and three-dimensional T-S waves in
the presence of wall waviness, providing proof of correct-
ness of our approach and of the numerics. Moreover,
when compared with the multiple-scales approach, we
confirm its capability to take into account non-parallel
effects.

Lastly an uncertainty quantification analysis is under-
taken in the presence of two-dimensional distributed ran-
dom roughness. The mean PSD follows a power law
subject to uncertainties following a Gaussian probabil-
ity distribution. At a constant r.m.s height, the mean
PSD of the surface roughness is found to be a key factor
in determining the mean receptivity amplitude. This is
in accordance with the fundamental view of receptivity
as a resonance phenomena - the more energy is contained
in the relevant length scales for a given acoustic wave fre-
quency, the higher the amplitude of the resulting T-S dis-
turbance within the boundary layer. The major source of
unpredictability in this stochastic process is rooted in the
phase differences between the spectral components com-
prising the roughness field distribution. The effects of
any random behavior of the mean PSD over the probabil-
ity density function of the T-S wave amplitude are minor
in comparison. In practical applications the roughness
model parameters can be tuned based on measurements
of the real surface. Specifically, the roughness r.m.s and
the PSD slope k should be determined in order to obtain
a realistic model. The amplitudes ai can also be replaced
altogether by an experimentally determined PSD.

The importance of predicting the initial amplitude of
boundary layer disturbances has been demonstrated. Re-
alistic transition scenarios can thus be simulated by cou-
pling the variance based receptivity analysis with NLPSE
computations to simulate non-linear growth of instabili-
ties, provided characterization of the freestream acoustic
and surface roughness fields are available. In our anal-
ysis the PSD of the freestream acoustic field is assumed
uniform and non-stochastic. A more realistic stochastic-
based description (i.e based on wind-tunnel measured
acoustic PSD, say) is trivial to implement in the overall
methodology. The approach provides variance estimates
on the most likely transition location; breakdown crite-
ria based on nonlinear PSE simulations are simplistic,
nevertheless this analysis was purely for demonstration
purposes of how the stochastic nature of the receptiv-
ity process feeds through and impacts the latter stages

of the laminar-turbulent breakdown. The same analysis
could be undertaken with more sophisticated modeling of
the latter stages of transition (with full DNS say), using
the mean receptivity amplitude and associated variance
estimates to stipulate inflow conditions in simulations.
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Appendix: Forced Linear Navier-Stokes Equations

Equation (25) can be rewritten as

∂ûc
∂x

+
∂v̂c
∂y

+ iβŵc = 0 , (A.1a)

1

R
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∂2ûc
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+ ûw
∂ua
∂x

+ va
∂ûw
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1

R

(
∂2ŵc
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+ ua
∂ŵw
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. (A.1d)

In the above, setting ω = 0, all right-hand side terms
to zero, and replacing the subscript c to w, recovers
the roughness induced mean-flow distortion Eqs. (23) of
§II C.
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