7 research outputs found

    Enhanced alpha-amylase production using Streptomyces gancidicus ASD by process optimization

    Get PDF
    845-852The present study was focused on purification and optimization of amylase from marine actinomycetes. Among 101 actinomycetes isolates from Andaman & Nicobar islands, Streptomyces sp gancidicus_ASD was isolated and further studied. The enzyme activity was studied at various physical parameters like temperature, pH, carbon source, Nitrogen source, metal ions, NaCl concentration etc. by maintaining all the factors with 100 ml of crude extract. Also, media optimization with response surface methodology was used to ameliorate the bioprocess economics. A central composite design was conducted to optimize the four selected factors. Statistical analyses of the data of model fitting were done by using Design expert 10.0 (stat-Ease). Results show a maximum predicted amylase yield of 11460.34 IU/ml when using 1.05% sucrose, 0.608% beef extract, 7.1 pH and 40.35 °C temperature. The predicted value is approximately 1.24-fold much higher than the original production (9248 IU/mL) determined by the conventional one-factor-at-a-time optimization method which can be applied in bioprocess for increased amylase yield

    Novel 1,3,4-oxadiazole induces anticancer activity by targeting NF-κB in hepatocellular carcinoma cells

    Get PDF
    Aberrant activation of NF-κB is linked with the progression of human malignancies including hepatocellular carcinoma (HCC), and blockade of NF-κB signaling could be a potential target in the treatment of several cancers. Therefore, designing of novel small molecule inhibitors that target NF-κB activation is of prime importance in the treatment of several cancers. In the present work, we report the synthesis of series of 1,3,4-oxadiazoles, investigated their anticancer potential against HCC cells, and identified 2-(3-chlorobenzo[b]thiophen-2-yl)-5-(3-methoxyphenyl)-1,3,4-oxadiazole (CMO) as the lead compound. Further, we examined the effect of CMO on cell cycle distribution (flow cytometry), apoptosis (annexin V-propidium iodide-FITC staining), and phosphorylation of NF-κB signaling pathway proteins (IκB and p65) in HCC cells. We found that CMO induced antiproliferative effect in dose- and time-dependent manner. Also, CMO significantly increased the percentage of sub-G1 cell population and induced apoptosis. Furthermore, CMO found to decrease the phosphorylation of IκB (Ser 32) in the cytoplasmic extract and p65 (Ser 536) in the nuclear extract of HCC cells. It also abrogated the DNA binding ability and transcriptional activity of NF-κB. CMO induced the cleavage of PARP and caspase-3 in a time-dependent manner. In addition, transfection with p65 small interfering RNA blocks CMO-induced caspase-3/7 activation. Molecular docking analysis revealed that CMO interacts with the hydrophobic region of p65 protein. Thus, we are reporting CMO as an inhibitor of NF-κB signaling pathway

    Analysis of solid tumor mutation profiles in liquid biopsy

    No full text
    Abstract Liquid biopsy is increasingly gaining traction as an alternative to invasive solid tumor biopsies for prognosis, treatment decisions, and disease monitoring. Matched tumor‐plasma samples were collected from 180 patients across different cancers with >90% of the samples below Stage IIIB. Tumors were profiled using next‐generation sequencing (NGS) or quantitative PCR (qPCR), and the mutation status was queried in the matched plasma using digital platforms such as droplet digital PCR (ddCPR) or NGS for concordance. Tumor‐plasma concordance of 82% and 32% was observed in advanced (Stage IIB and above) and early (Stage I to Stage IIA) stage samples, respectively. Interestingly, the overall survival outcomes correlated to presurgical/at‐biopsy ctDNA levels. Baseline ctDNA stratified patients into three categories: (a) high ctDNA correlated with poor survival outcome, (b) undetectable ctDNA with good outcome, and (c) low ctDNA whose outcome was ambiguous. ctDNA could be a powerful tool for therapy decisions and patient management in a large number of cancers across a variety of stages
    corecore