6,591 research outputs found
Three-body interactions in complex fluids: virial coefficients from simulation finite-size effects
A simulation technique is described for quantifying the contribution of
three-body interactions to the thermodynamical properties of coarse-grained
representations of complex fluids. The method is based on comparing the third
virial coefficient for a complex fluid with that of an approximate
coarse-grained model described by a pair potential. To obtain we
introduce a new technique which expresses its value in terms of the measured
volume-dependent asymptote of a certain structural function. The strategy is
applicable to both Molecular Dynamics and Monte Carlo simulation. Its utility
is illustrated via measurements of three-body effects in models of star polymer
and highly size-asymmetrical colloid-polymer mixtures.Comment: 13 pages, 8 figure
Pneumococcal conjugate vaccine given shortly after birth stimulates effective antibody concentrations and primes immunological memory for sustained infant protection.
BACKGROUND: In developing countries, newborn immunization with pneumococcal conjugate vaccines (PCVs) could protect young infants who are at high risk of invasive pneumococcal disease (IPD) but might lead to immune tolerance. METHODS: In a randomized trial, young infants received 7-valent PCV at 6, 10, and 14 weeks (Expanded Programme on Immunization [EPI] group) or 0, 10, and 14 weeks (newborn group). Safety was monitored actively at 2-7 days and then passively. Serum samples obtained at birth and 6, 10, 14, 18, 36, and 37 weeks were assayed by enzyme-linked immunosorbent assay for anticapsular immunoglobulin G concentration and avidity. Infants were boosted with either 7-valent PCV or one-fifth dose of pneumococcal polysaccharide vaccine at 36 weeks. Nasopharyngeal swab samples were obtained at 18 and 36 weeks. RESULTS: Three-hundred neonates and young infants were enrolled. Newborn vaccination was well tolerated. Adverse events occurred equally in each group; none was related to immunization. One infant, immunized at birth, died of unrelated neonatal sepsis. At 18 weeks, protective concentrations (≥0.35 μg/mL) were achieved against each serotype by ≥87% of infants with no significant differences between groups. Geometric mean concentrations were higher in the EPI group for serotypes 4, 9V, 18C, and 19F at 18 weeks and for serotype 4 at 36 weeks. Avidity was greater in the newborn group for serotypes 4, 6B, and 19F at 18 weeks and for serotype 19F at 36 weeks. Booster responses and vaccine-type/nonvaccine-type carriage prevalence did not differ between groups. CONCLUSIONS: PCV was safe, immunogenic, and primed for memory when given at birth. There was no evidence of immune tolerance. Vaccination beginning at birth offers an alternative to control IPD in vulnerable young infants
Relationship between vibrations and dynamical heterogeneity in a model glass former: extended soft modes but local relaxation
We study the relation between short-time vibrational modes and long-time
relaxational dynamics in a kinetically constrained lattice gas with harmonic
interactions between neighbouring particles. We find a correlation between the
location of the low (high) frequency vibrational modes and regions of high
(low) propensity for motion. This is similar to what was observed in continuous
force systems, but our interpretation is different: in our case relaxation is
due to localised excitations which propagate through the system; these
localised excitations act as background disorder for the elastic network,
giving rise to anomalous vibrational modes. Our results show that a correlation
between spatially extended low frequency modes and high propensity regions does
not imply that relaxational dynamics originates in extended soft modes. We
consider other measures of elastic heterogeneity, such as non-affine
displacement fields and mode localisation lengths, and discuss implications of
our results to interpretations of dynamic heterogeneity more generally.Comment: 5 pages, 5 figure
Depletion potentials in highly size-asymmetric binary hard-sphere mixtures: Comparison of accurate simulation results with theory
We report a detailed study, using state-of-the-art simulation and theoretical
methods, of the depletion potential between a pair of big hard spheres immersed
in a reservoir of much smaller hard spheres, the size disparity being measured
by the ratio of diameters q=\sigma_s/\sigma_b. Small particles are treated
grand canonically, their influence being parameterized in terms of their
packing fraction in the reservoir, \eta_s^r. Two specialized Monte Carlo
simulation schemes --the geometrical cluster algorithm, and staged particle
insertion-- are deployed to obtain accurate depletion potentials for a number
of combinations of q\leq 0.1 and \eta_s^r. After applying corrections for
simulation finite-size effects, the depletion potentials are compared with the
prediction of new density functional theory (DFT) calculations based on the
insertion trick using the Rosenfeld functional and several subsequent
modifications. While agreement between the DFT and simulation is generally
good, significant discrepancies are evident at the largest reservoir packing
fraction accessible to our simulation methods, namely \eta_s^r=0.35. These
discrepancies are, however, small compared to those between simulation and the
much poorer predictions of the Derjaguin approximation at this \eta_s^r. The
recently proposed morphometric approximation performs better than Derjaguin but
is somewhat poorer than DFT for the size ratios and small sphere packing
fractions that we consider. The effective potentials from simulation, DFT and
the morphometric approximation were used to compute the second virial
coefficient B_2 as a function of \eta_s^r. Comparison of the results enables an
assessment of the extent to which DFT can be expected to correctly predict the
propensity towards fluid fluid phase separation in additive binary hard sphere
mixtures with q\leq 0.1.Comment: 16 pages, 9 figures, revised treatment of morphometric approximation
and reordered some materia
“CLOCK as a transformative methodology; exploring how the CLOCK initiative has transformed theory and practice in legal education”
In this panel we will consider how CLOCK has reimagined the traditional clinical legal education model, centring community legal needs within a collaborative outreach model. CLOCK was initiated at a time of crisis, when community legal needs are rising, the legal profession has limited public funding for family and social welfare law, and the regulatory framework for supervision within legal education is being revised
Monte Carlo cluster algorithm for fluid phase transitions in highly size-asymmetrical binary mixtures
Highly size-asymmetrical fluid mixtures arise in a variety of physical
contexts, notably in suspensions of colloidal particles to which much smaller
particles have been added in the form of polymers or nanoparticles.
Conventional schemes for simulating models of such systems are hamstrung by the
difficulty of relaxing the large species in the presence of the small one. Here
we describe how the rejection-free geometrical cluster algorithm (GCA) of Liu
and Luijten [Phys. Rev. Lett 92, 035504 (2004)] can be embedded within a
restricted Gibbs ensemble to facilitate efficient and accurate studies of fluid
phase behavior of highly size-asymmetrical mixtures. After providing a detailed
description of the algorithm, we summarize the bespoke analysis techniques of
Ashton et al. [J. Chem. Phys. 132, 074111 (2010)] that permit accurate
estimates of coexisting densities and critical-point parameters. We apply our
methods to study the liquid--vapor phase diagram of a particular mixture of
Lennard-Jones particles having a 10:1 size ratio. As the reservoir volume
fraction of small particles is increased in the range 0--5%, the critical
temperature decreases by approximately 50%, while the critical density drops by
some 30%. These trends imply that in our system, adding small particles
decreases the net attraction between large particles, a situation that
contrasts with hard-sphere mixtures where an attractive depletion force occurs.Comment: 11 pages, 10 figure
Self-assembly and crystallisation of indented colloids at a planar wall
We report experimental and simulation studies of the structure of a monolayer
of indented ("lock and key") colloids, on a planar surface. On adding a
non-absorbing polymer with prescribed radius and volume fraction, depletion
interactions are induced between the colloids, with controlled range and
strength. For spherical particles, this leads to crystallisation, but the
indented colloids crystallise less easily than spheres, in both simulation and
experiment. Nevertheless, simulations show that indented colloids do form
plastic (rotator) crystals. We discuss the conditions under which this occurs,
and the possibilities of lower-symmetry crystal states. We also comment on the
kinetic accessibility of these states.Comment: 8 pages, 8 figure
Unique Transcriptional Profile of Sustained Ligand-Activated Preconditioning in Pre- and Post-Ischemic Myocardium
BACKGROUND: Opioidergic SLP (sustained ligand-activated preconditioning) induced by 3–5 days of opioid receptor (OR) agonism induces persistent protection against ischemia-reperfusion (I-R) injury in young and aged hearts, and is mechanistically distinct from conventional preconditioning responses. We thus applied unbiased gene-array interrogation to identify molecular effects of SLP in pre- and post-ischemic myocardium. METHODOLOGY/PRINCIPAL FINDINGS: Male C57Bl/6 mice were implanted with 75 mg morphine or placebo pellets for 5 days. Resultant SLP did not modify cardiac function, and markedly reduced dysfunction and injury in perfused hearts subjected to 25 min ischemia/45 min reperfusion. Microarray analysis identified 14 up- and 86 down-regulated genes in normoxic hearts from SLP mice (≥1.3-fold change, FDR≤5%). Induced genes encoded sarcomeric/contractile proteins (Myh7, Mybpc3,Myom2,Des), natriuretic peptides (Nppa,Nppb) and stress-signaling elements (Csda,Ptgds). Highly repressed genes primarily encoded chemokines (Ccl2,Ccl4,Ccl7,Ccl9,Ccl13,Ccl3l3,Cxcl3), cytokines (Il1b,Il6,Tnf) and other proteins involved in inflammation/immunity (C3,Cd74,Cd83, Cd86,Hla-dbq1,Hla-drb1,Saa1,Selp,Serpina3), together with endoplasmic stress proteins (known: Dnajb1,Herpud1,Socs3; putative: Il6, Gadd45g,Rcan1) and transcriptional controllers (Egr2,Egr3, Fos,Hmox1,Nfkbid). Biological themes modified thus related to inflammation/immunity, together with cellular/cardiovascular movement and development. SLP also modified the transcriptional response to I-R (46 genes uniquely altered post-ischemia), which may influence later infarction/remodeling. This included up-regulated determinants of cellular resistance to oxidant (Mgst3,Gstm1,Gstm2) and other forms of stress (Xirp1,Ankrd1,Clu), and repression of stress-response genes (Hspa1a,Hspd1,Hsp90aa,Hsph1,Serpinh1) and Txnip. CONCLUSIONS: Protection via SLP is associated with transcriptional repression of inflammation/immunity, up-regulation of sarcomeric elements and natriuretic peptides, and modulation of cell stress, growth and development, while conventional protective molecules are unaltered
Multistability of free spontaneously-curved anisotropic strips
Multistable structures are objects with more than one stable conformation,
exemplified by the simple switch. Continuum versions are often elastic
composite plates or shells, such as the common measuring tape or the slap
bracelet, both of which exhibit two stable configurations: rolled and unrolled.
Here we consider the energy landscape of a general class of multistable
anisotropic strips with spontaneous Gaussian curvature. We show that while
strips with non-zero Gaussian curvature can be bistable, strips with positive
spontaneous curvature are always bistable, independent of the elastic moduli,
strips of spontaneous negative curvature are bistable only in the presence of
spontaneous twist and when certain conditions on the relative stiffness of the
strip in tension and shear are satisfied. Furthermore, anisotropic strips can
become tristable when their bending rigidity is small. Our study complements
and extends the theory of multistability in anisotropic shells and suggests new
design criteria for these structures.Comment: 20 pages, 10 figure
Identification of diverse database subsets using property-based and fragment-based molecular descriptions
This paper reports a comparison of calculated molecular properties and of 2D fragment bit-strings when used for the selection of structurally diverse subsets of a file of 44295 compounds. MaxMin dissimilarity-based selection and k-means cluster-based selection are used to select subsets containing between 1% and 20% of the file. Investigation of the numbers of bioactive molecules in the selected subsets suggest: that the MaxMin subsets are noticeably superior to the k-means subsets; that the property-based descriptors are marginally superior to the fragment-based descriptors; and that both approaches are noticeably superior to random selection
- …