Multistable structures are objects with more than one stable conformation,
exemplified by the simple switch. Continuum versions are often elastic
composite plates or shells, such as the common measuring tape or the slap
bracelet, both of which exhibit two stable configurations: rolled and unrolled.
Here we consider the energy landscape of a general class of multistable
anisotropic strips with spontaneous Gaussian curvature. We show that while
strips with non-zero Gaussian curvature can be bistable, strips with positive
spontaneous curvature are always bistable, independent of the elastic moduli,
strips of spontaneous negative curvature are bistable only in the presence of
spontaneous twist and when certain conditions on the relative stiffness of the
strip in tension and shear are satisfied. Furthermore, anisotropic strips can
become tristable when their bending rigidity is small. Our study complements
and extends the theory of multistability in anisotropic shells and suggests new
design criteria for these structures.Comment: 20 pages, 10 figure