59 research outputs found

    Acute Pancreatitis: Presentation and Risk Assessment

    Get PDF

    New lithium-ion conductors based on the NASICON structure

    Get PDF
    Lithium-ion conduction in mixed-metal phosphates, LiMVMIII(PO4)3 [MV=Nb, Ta; MIII=Al, Cr, Fe], possessing the rhombohedral (R3c) NASICON structure has been investigated. Among the phosphates investigated, LiTaAl(PO4)3 exhibits the highest conductivity, σ ≈ 1.0×10-2 S cm-1 at 350°C (Ea=0.47 eV), comparable to the conductivity of LiTi2(PO4)3. Unlike LiTi2(PO4)3 which contains lithium-reducible TiIV, LiTaAl(PO4)3 contains stable TaV and AlIII oxidation states and hence deserves further attention towards tailoring new lithium-ion conductors for application as electrolytes in solid state lithium batteries

    Near-IR studies of recurrent nova V745 Scorpii during its 2014 outburst

    Full text link
    The recurrent nova (RN) V745 Scorpii underwent its third known outburst on 2014 February 6. Infrared monitoring of the eruption on an almost daily basis, starting from 1.3d after discovery, shows the emergence of a powerful blast wave generated by the high velocity nova ejecta exceeding 4000 kms1^{-1} plowing into its surrounding environment. The temperature of the shocked gas is raised to a high value exceeding 108^{8}K immediately after outburst commencement. The energetics of the outburst clearly surpass those of similar symbiotic systems like RS Oph and V407 Cyg which have giant secondaries. The shock does not show a free-expansion stage but rather shows a decelerative Sedov-Taylor phase from the beginning. Such strong shockfronts are known to be sites for γ\gamma ray generation. V745 Sco is the latest nova, apart from five other known novae, to show γ\gamma ray emission. It may be an important testbed to resolve the crucial question whether all novae are generically γ\gamma ray emitters by virtue of having a circumbinary reservoir of material that is shocked by the ejecta rather than γ\gamma ray generation being restricted to only symbiotic systems with a shocked red giant (RG) wind. The lack of a free-expansion stage favors V745 Sco to have a density enhancement around the white dwarf (WD), above that contributed by a RG wind. Our analysis also suggests that the WD in V745 Sco is very massive and a potential progenitor for a future SN Ia explosion.Comment: To appear in ApJ (Letters

    The peculiar extinction law of SN2014J measured with The Hubble Space Telescope

    Get PDF
    The wavelength-dependence of the extinction of Type Ia SN2014J in the nearby galaxy M82 has been measured using UV to near-IR photometry obtained with the Hubble Space Telescope, the Nordic Optical Telescope, and the Mount Abu Infrared Telescope. This is the first time that the reddening of a SN Ia is characterized over the full wavelength range of 0.20.2-22 microns. A total-to-selective extinction, RV3.1R_V\geq3.1, is ruled out with high significance. The best fit at maximum using a Galactic type extinction law yields RV=1.4±0.1R_V = 1.4\pm0.1. The observed reddening of SN2014J is also compatible with a power-law extinction, Aλ/AV=(λ/λV)pA_{\lambda}/A_V = \left( {\lambda}/ {\lambda_V} \right)^{p} as expected from multiple scattering of light, with p=2.1±0.1p=-2.1\pm0.1. After correction for differences in reddening, SN2014J appears to be very similar to SN2011fe over the 14 broad-band filter light curves used in our study.Comment: Accepted for publication in ApJ

    Early Observations and Analysis of the Type Ia SN 2014J in M82

    Full text link
    We present optical and near infrared (NIR) observations of the nearby Type Ia SN 2014J. Seventeen optical and twenty-three NIR spectra were obtained from 10 days before (-10d) to 10 days after (+10d) the time of maximum BB-band brightness. The relative strengths of absorption features and their patterns of development can be compared at one day intervals throughout most of this period. Carbon is not detected in the optical spectra, but we identify CI λ\lambda 1.0693 in the NIR spectra. We find that MgII lines with high oscillator strengths have higher initial velocities than other MgII lines. We show that the velocity differences can be explained by differences in optical depths due to oscillator strengths. The spectra of SN 2014J show it is a normal SN Ia, but many parameters are near the boundaries between normal and high-velocity subclasses. The velocities for OI, MgII, SiII, SII, CaII and FeII suggest that SN 2014J has a layered structure with little or no mixing. That result is consistent with the delayed detonation explosion models. We also report photometric observations, obtained from -10d to +29d, in the UBVRIJHUBVRIJH and KsK_s bands. SN 2014J is about 3 magnitudes fainter than a normal SN Ia at the distance of M82, which we attribute to extinction in the host. The template fitting package SNooPy is used to interpret the light curves and to derive photometric parameters. Using RVR_V = 1.46, which is consistent with previous studies, SNooPy finds that AV=1.80A_V = 1.80 for E(BV)host=1.23±0.01E(B-V)_{host}=1.23 \pm 0.01 mag. The maximum BB-band brightness of 19.19±0.10-19.19 \pm 0.10 mag was reached on February 1.74 UT ±0.13 \pm 0.13 days and the supernova had a decline parameter of Δm15=1.11±0.02\Delta m_{15}=1.11 \pm 0.02 mag.Comment: 6 figures, 6 tables, submitted to the Ap

    The rise of SN 2014J in the nearby galaxy M82

    Get PDF
    We report on the discovery of SN 2014J in the nearby galaxy M82. Given its proximity, it offers the best opportunity to date to study a thermonuclear supernova (SN) over a wide range of the electromagnetic spectrum. Optical, near-IR, and mid-IR observations on the rising light curve, orchestrated by the intermediate Palomar Transient Factory, show that SN 2014J is a spectroscopically normal Type Ia supernova (SN Ia), albeit exhibiting high-velocity features in its spectrum and heavily reddened by dust in the host galaxy. Our earliest detections start just hours after the fitted time of explosion. We use high-resolution optical spectroscopy to analyze the dense intervening material and do not detect any evolution in the resolved absorption features during the light curve rise. Similar to other highly reddened SNe Ia, a low value of total-to-selective extinction, RV ≲ 2, provides the best match to our observations. We also study pre-explosion optical and near-IR images from Hubble Space Telescope with special emphasis on the sources nearest to the SN location. © 2014. The American Astronomical Society. All rights reserved

    Federated learning enables big data for rare cancer boundary detection.

    Get PDF
    Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing

    Author Correction: Federated learning enables big data for rare cancer boundary detection.

    Get PDF
    10.1038/s41467-023-36188-7NATURE COMMUNICATIONS14
    corecore