196 research outputs found

    Investigating magnetic field dose effects in small animals: a Monte Carlo study

    Get PDF
    Purpose: In MRI-linac treatments, radiation dose distributions are affected by magnetic fields, especially at high-density/low-density interfaces. Radiobiological consequences of magnetic field dose effects are presently unknown and preclinical studies are desirable. This study investigates the optimal combination of beam energy and magnetic field strength needed for preclinical murine studies.Methods: The Monte Carlo code MCNP6 was used to simulate the effects of a magnetic field when irradiating a mouse lung phantom with a 1.0 cm × 1.0 cm photon beam. Magnetic field dose effects were examined using various beam energies (225 kVp, 662 keV [Cs-137], and 1.25MeV [Co-60]) and magnetic field strengths (0.75 T, 1.5 T, and 3 T). The resulting dose distributions were compared to Monte Carlo results for humans with various field sizes and patient geometries using a 6MV/1.5T MRI-linac.Results: In human simulations, the addition of a 1.5 T magnetic field causes an average dose increase of 49% (range: 36% - 60%) to lung at the soft tissue-lung interface and an average dose decrease of 30% (range: 25% - 36%) at the lung-soft tissue interface. In mouse simulations, no magnetic field dose effects were seen with the 225 kVp beam. The dose increase for the Cs-137 beam was 12%, 33%, and 49% for 0.75 T, 1.5 T, and 3.0 T magnetic fields, respectively while the dose decrease was 7%, 23%, and 33%. For the Co-60 beam the dose increase was 14%, 45%, and 41%, and the dose decrease was 18%, 35%, and 35%.Conclusion: The magnetic field dose effects observed in mouse phantoms using a Co-60 beam with 1.5 T or 3 T fields or a Cs-137 beam with a 3T field fall within the range seen in humans treated with an MRI-linac. These irradiator/magnet combinations are therefore suitable for preclinical studies investigating potential biological effects of delivering radiation therapy in the presence of a magnetic field.---------------------------Cite this article as: Rubinstein A, Guindani M, Hazle JD, Court LE. Investigating magnetic field dose effects in small animals: a Monte Carlo study. Int J Cancer Ther Oncol 2014; 2(2):020233. DOI: 10.14319/ijcto.0202.3

    Role of Transferrin Receptor and the ABC Transporters ABCB6 and ABCB7 for Resistance and Differentiation of Tumor Cells towards Artesunate

    Get PDF
    The anti-malarial artesunate also exerts profound anti-cancer activity. The susceptibility of tumor cells to artesunate can be enhanced by ferrous iron. The transferrin receptor (TfR) is involved in iron uptake by internalization of transferrin and is over-expressed in rapidly growing tumors. The ATP-binding cassette (ABC) transporters ABCB6 and ABCB7 are also involved in iron homeostasis. To investigate whether these proteins play a role for sensitivity towards artesunate, Oncotest's 36 cell line panel was treated with artesunate or artesunate plus iron(II) glycine sulfate (FerrosanolÂź). The majority of cell lines showed increased inhibition rates, for the combination of artesunate plus iron(II) glycine sulfate compared to artesunate alone. However, in 11 out of the 36 cell lines the combination treatment was not superior. Cell lines with high TfR expression significantly correlated with high degrees of modulation indicating that high TfR expressing tumor cells would be more efficiently inhibited by this combination treatment than low TfR expressing ones. Furthermore, we found a significant relationship between cellular response to artesunate and TfR expression in 55 cell lines of the National Cancer Institute (NCI), USA. A significant correlation was also found for ABCB6, but not for ABCB7 in the NCI panel. Artesunate treatment of human CCRF-CEM leukemia and MCF7 breast cancer cells induced ABCB6 expression but repressed ABCB7 expression. Finally, artesunate inhibited proliferation and differentiation of mouse erythroleukemia (MEL) cells. Down-regulation of ABCB6 by antisense oligonucleotides inhibited differentiation of MEL cells indicating that artesunate and ABCB6 may cooperate. In conclusion, our results indicate that ferrous iron improves the activity of artesunate in some but not all tumor cell lines. Several factors involved in iron homeostasis such as TfR and ABCB6 may contribute to this effect

    The Relationship of Mucus Concentration (Hydration) to Mucus Osmotic Pressure and Transport in Chronic Bronchitis

    Get PDF
    Rationale: Chronic bronchitis (CB) is characterized by persistent cough and sputum production. Studies were performed to test whether mucus hyperconcentration and increased partial osmotic pressure, in part caused by abnormal purine nucleotide regulation of ion transport, contribute to the pathogenesis of CB

    Radiation-Induced Lung Toxicity in Mice Irradiated in a Strong Magnetic Field - Mouse 125

    No full text
    Mouse 125: Irradiated 06/29/2016 Pre Scan: 06/28/2016 Post Scan: 11/16/201

    Radiation-Induced Lung Toxicity in Mice Irradiated in a Strong Magnetic Field - Mouse 94

    No full text
    Mouse 94: Irradiated 06/01/2016 Pre Scan: 05/31/2016 Post Scan: 10/18/201

    Radiation-Induced Lung Toxicity in Mice Irradiated in a Strong Magnetic Field - Mouse 37

    No full text
    Mouse 37: Irradiated 05/11/2016 Pre Scan: 05/10/2016 Post Scan: 09/27/201

    Radiation-Induced Lung Toxicity in Mice Irradiated in a Strong Magnetic Field - Mouse 85

    No full text
    Mouse 85: Irradiated 06/01/2016 Pre Scan: 05/31/2016 Post Scan: 10/18/201
    • 

    corecore