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Purpose of review: Current research on the human Band 3 glycoprotein, the red cell 16 

chloride/bicarbonate anion exchanger (AE1), is highlighted and placed within a structural context. 17 

Recent Findings: The determination of the crystal structure of the membrane domain of human Band 3, 18 

the founding member of the SLC4 family of bicarbonate transporters, is a major breakthrough towards 19 

understanding the mechanism of action of this membrane transport protein, its interaction with partner 20 

proteins, and how mutations linked to disease affect its ability to fold and function.  21 

Summary: Band 3 contains 14 transmembrane (TM) segments arranged in a 7+7 TM inverted repeat 22 

topology common to all members of the SLC4 family and the unrelated SLC26 anion transporter family. 23 

A functional feature of this fold is the presence of a core and a gate domain: the core domain contains 24 

two short TM helices (TM3 and 10) that face each other in the middle of the membrane with the positive 25 

N-terminal helix dipoles creating the anion binding site, while the gate domain forms the dimer 26 

interface. During transport, the movement of these two domains relative to each other provides the 27 

intracellular and extracellular compartments with alternating access to the central anion binding site.  28 

Keywords: anion transport, Band 3, membrane proteins, SLC4, trafficking 29 

 30 

  31 
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Introduction 32 

Band 3, also known as Anion Exchanger 1 (AE1) or Solute Carrier 4A1 (SLC4A1), is responsible for 33 

the electroneutral exchange of chloride and bicarbonate across the red cell membrane, a process 34 

necessary for efficient transport of CO2 during respiration. Band 3 is also important for maintaining red 35 

cell shape, anchoring the actin-spectrin cytoskeleton at the membrane. A truncated kidney anion 36 

exchanger 1 (kAE1), lacking the first 65 residues, is expressed in the basolateral membrane of -37 

intercalated cells, where it plays a role in bicarbonate reabsorption into the blood to facilitate acid 38 

secretion into the urine. Genetic defects in the SLC4A1 gene lead to red blood cell diseases, which 39 

include hereditary spherocytosis (HS), hereditary stomatocytosis (HSt), and Southeast Asian 40 

ovalocytosis (SAO), as well as the kidney disease distal renal tubular acidosis (dRTA). 41 

Human Band 3 is an abundant 911-residue glycoprotein comprised of two domains: an N-terminal 42 

cytosolic domain (cdAE1) that anchors the cytoskeleton at the membrane and interacts with numerous 43 

erythrocyte proteins including deoxyhemoglobin [1] and a C-terminal membrane domain (mdAE1) that 44 

performs anion exchange [2]. Through a cytosolic C-terminal tail, the membrane domain interacts with 45 

carbonic anhydrase II (CAII), which interconverts carbon dioxide and bicarbonate, to form a bicarbonate 46 

transport metabolon [3,4]. Band 3 exists as a mixture of dimers and tetramers in membranes and 47 

detergent solutions [5]. These oligomers form interaction hubs around which integral and peripheral 48 

membrane proteins of the red blood cell are organized [6].  49 

A variety of methods have been used to elucidate the transmembrane topology of Band 3, including 50 

proteolysis, chemical labeling, epitope mapping, scanning N-glycosylation and cysteine mutagenesis, 51 

and fragment-complementation assays [7**]. While these experiments indicated that mdAE1 crosses the 52 

membrane up to 14 times, the topology around putative spans 9 to 12 remained unclear. The crystal 53 



 4 

structure of cdAE1 was determined in 2000 [1], but mdAE1 resisted high-resolution structural analysis 54 

for a further 15 years [8**]. Crystallization of dimeric human mdAE1 (Fig. 1) was enabled by trypsin 55 

cleavage and deglycosylation, use of a monoclonal Fab that bound a conformational epitope, and 56 

locking of the structure in an outward-facing open conformation with H2DIDS, a competitive inhibitor 57 

of anion transport.  58 

The membrane domain of Band 3 has a 7+7 TM inverted repeat structure 59 

The crystal structure of mdAE1 confirmed that Band 3 contains 14 -helical transmembrane (TM) 60 

segments that consist of two inverted seven TM-repeats (TM1 to 7 and TM8 to 14) (Fig. 2a). The TM 61 

segments have a complex topology and are intertwined to form two sub-domains: the core and gate 62 

domains (Fig. 2b). TM1 to 4 and 8 to 11 make up the core domain, and TM5 to 7 and 12 to 14 the gate 63 

domain (Fig. 2c). This folding pattern, known as the 7+7 TM inverted repeat fold [9*], differs from the 64 

major facilitator superfamily (MFS) of transporters that have a much simpler 12 TM topology arranged 65 

in two linear domains (TM1-6 and TM7-12) connected by a cytosolic linker [10,11*].  The 7+7 TM 66 

inverted repeat topology appears to be common to the SLC4 family proteins, as suggested by recent 67 

structures of proteins related to human SLC4A11 [12*,13*]. This fold was first observed in the bacterial 68 

proton-uracil symporter UraA, a member of the SLC23 nucleobase transport family [14*], and 69 

subsequently in the fungal proton-purine symporter UapA [15*] and a bacterial SLC26 anion transporter 70 

[16*].  71 

Helix dipoles comprise the anion binding site 72 

A unique feature of 7+7 TM inverted repeat proteins is the presence of two pseudo-symmetry related 73 

half-helices, TM3 and TM10, that face each other in the middle of the lipid bilayer [9*]. In UraA and 74 

UapA, substrates are bound between the N termini of these two half-helices [14*,15*]. In mdAE1, the 75 
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anion-binding site is also found between the N-terminal ends of TM3 and 10 located in the core domain 76 

(Fig. 3a). The anion is held in place by the positive helical dipoles [17].  Transport also involves Arg730 77 

from TM10 and Glu681 from TM8 (Fig. 3a). Arg730 forms part of the anion-binding site and interacts 78 

with one of the sulfates of H2DIDS, while Glu681 points towards the anion-binding site and may act as 79 

an anionic gate. Consistent with this mode of substrate binding, mutation of Arg748 in mouse Band 3 80 

(equivalent to Arg730) impairs anion transport [18]. Of note, Glu681 has been identified as the proton-81 

binding site for proton-sulfate/chloride exchange by Band 3 [19]. In the sodium-bicarbonate co-82 

transporting members of the SLC4 family, Glu681 is replaced by Asp, suggesting that this Asp likely 83 

provides the sodium-binding site in these proteins [20]. 84 

Disease-causing Band 3 mutations 85 

The crystal structure of mdAE1 revealed the location of a variety of mutations that cause the diseases 86 

HS, HSt, and dRTA [7**]. Many of these mutations cause misfolding and/or aberrant trafficking of the 87 

protein, affecting Band 3 localisation during red cell development or targeting to the basolateral surface 88 

of kidney epithelial cells. While most mutations cause standalone trafficking defects that impact only 89 

one allele and lead to recessive disease, some mutations can lead to mis-trafficking of the wild type 90 

protein by hetero-dimerization causing a dominant disease phenotype [7**]. Band 3 trafficking is also 91 

influenced by additional factors, including Glycophorin A (GPA) and ER chaperones. GPA facilitates 92 

trafficking of Band 3 to the cell surface and can rescue certain Band 3 mutants, including Band 3 SAO 93 

[21]. ER chaperones involved in the folding of glycoproteins, like calnexin, are selectively removed 94 

during terminal erythropoiesis while inhibition of these chaperones in kidney cells can rescue trafficking 95 

of certain kAE1 mutants [22,23]. Specific mutations in Band 3 can cause HSt by inducing cation 96 

passage in the protein; many of these mutations are clustered at the interface between the core and gate 97 

domains near the anion binding site (Fig. 3b) [7**].  98 
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Ion transport mechanism of mdAE1 99 

The core and gate domains are separated by a V-shaped cleft that opens to the extracellular side of the 100 

membrane (Fig. 4a). The substrate-binding site lies at the vertex of the cleft (Fig. 4a), and substrate 101 

passage to this region is blocked when the inhibitor H2DIDS is bound (Fig. 2c). Substrate binding 102 

residues are exclusively in the core domain (Fig. 3a), while the DIDS-reactive Lys539 and Lys851 are in 103 

the gate domain on TM5 and 13, respectively (Fig. 2c).  104 

Anion exchange is achieved through a relative movement of the core and gate domains, providing the 105 

substrates with alternating access to either side of the membrane [24]. While the precise mechanism of 106 

anion transport remains unclear, there are three prevailing models for alternating access (Fig. 4b) [25]. 107 

In the “rocking switch model” both core and gate domains move relative to the lipid bilayer to provide 108 

the alternating access. In the “rocking bundle model” alternating access is accomplished through the 109 

movement of one of the domains against the other, which remains immobile. Finally, in the “elevator 110 

transport model” one domain moves against the other to change the depth of the substrate-binding site in 111 

the membrane. Structures of other 7+7 TM inverted repeat transporters showed that they adopt inward-112 

facing or intermediate occluded conformations, in contrast to the outward-facing mdAE1 113 

[12*,13*,14*,15*,16*,26**]. Thus far, the structure of only one member of the 7+7 TM inverted repeat 114 

family, UraA, has been reported in two states: inward-facing and occluded [26**]. Comparison of these 115 

two conformations suggests a hybrid rocking-bundle elevator mode of transport, in which alternating 116 

access is achieved through a combination of a relative movement of the core against the gate, local 117 

rearrangement within the gate, and concomitant translocation of the substrate. However, a model of 118 

inward-facing mdAE1 built using a technique known as repeat-swap homology modelling, in which the 119 

conformation of the two pseudo-symmetry related repeats are exchanged [27*,28], suggests that mdAE1 120 
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uses only an elevator-like mechanism for anion transport. Further experiments are needed to discern 121 

between the possible modes of transport by mdAE1 and related family members. 122 

The crystal structure provides context for other functional elements of Band 3  123 

The N- and C-terminal regions of mdAE1 are in the cytoplasm and contain two amphipathic -helices, 124 

H1 and H6, that lie along the inner membrane surface (Fig. 4c). H1 (residues 383-401) precedes TM1, 125 

connecting the transmembrane region to the cytosolic domain of Band 3. A nine-amino acid deletion 126 

(Ala401-Ala409) in this region causes SAO [29], potentially altering the relative orientation of the 127 

cytoplasmic and membrane domains. H6 follows TM14 and links it to the C-terminal CAII-interacting 128 

region of Band 3.  129 

The membrane domain of AE1 contains four additional amphipathic -helices (H2-H5) that connect TM 130 

segments (Fig. 4c). H2 lies on the cytoplasmic face of mdAE1 between TM4 and 5 and H3 lies on the 131 

extracellular side between TM11 and 12. Both H2 and H3 connect the core to the gate domain, and the 132 

repeat-swap homology model of inward-facing mdAE1 suggests that H2 and H3 undergo a 133 

rearrangement to facilitate mdAE1 conformational changes during anion transport [27*].  134 

The mdAE1 and cdAE1 can be separated by mild protease treatment of red cell ghosts and are thought 135 

to function independently [2], unlike other SLC4 proteins in which the cytoplasmic domain is required 136 

for activity [30,31]. Analysis of purified bovine Band 3 by negative-stain electron microscopy suggested 137 

that the membrane domain and cytosolic domain are connect by a 3 nm flexible linker [32*]. In contrast, 138 

a model of full-length human Band 3 based on the crystal structures of mdAE1, cdAE1, and zero-length 139 

cross-linking analysis of red blood cell membranes suggested a more compact arrangement within the 140 

intact protein, as well as an interaction between cytoplasmic loops of the membrane domain and the 141 

cytosolic domain [33*]. This interaction is proposed to hold the cytosolic domain in place and out of the 142 



 8 

way of the substrate exit pore on the cytoplasmic side of mdAE1 [33*], supporting the notion that Band 143 

3 does not contain a substrate access tunnel in its cytosolic domain [34].  144 

Interestingly, the presence of a discontinuous SH2 domain in Band 3 that regulates anion transport by a 145 

phosphorylation-dependent mechanism was reported recently [35**]. A conserved phospho-tyrosine 146 

binding motif was detected within H2 that interacts with phosphorylated cdAE1, disrupting Band 3-147 

cytoskeletal interactions and destabilizing the red blood cell membrane. This intramolecular 148 

rearrangement would require that H2 partially unfolds to interact with phosphorylated cdAE1, and is 149 

consistent with the notion that H2, which links the core and gate domains, is involved in conformational 150 

changes associated with anion transport [27*]. Using Syk kinase inhibitors to prevent tyrosine 151 

phosphorylation of Band 3 and increase erythrocyte membrane strength reduced Plasmodium falciparum 152 

egress in parasitized red blood cells, thus providing a potential therapeutic avenue to inhibit malaria 153 

progression [36]. 154 

Band 3 dimer and tetramer structures 155 

The structure of mdAE1 showed that dimerization is mediated exclusively by the gate domain, through 156 

interactions between TM5 and 6 from each subunit, and some residues from TM7, H4, and the loop 157 

connecting H4 to H5 (Fig. 1). Interfacial lipids have been shown to be important for oligomerization of 158 

many membrane proteins [37*] but their role in stabilization of the Band 3 dimer is unclear. While both 159 

UraA and UapA require dimerization for transport activity [15*,26**], studies with inhibitors have 160 

shown that each subunit of Band 3 can operate independently [38]. Indeed, co-expression of wild-type 161 

Band 3 and a non-functional SAO Band 3 mutant results in the surface expression of a heterodimer that 162 

retains almost 50% of wildtype activity [29]. Furthermore, it has been shown that the region around 163 

TM6-7, which is involved in dimerization, was dispensable for Band 3 function [39,40]. 164 
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Band 3 tetramers are dimers of dimers stabilized by binding of ankyrin to each tetramer [5,41]. Cross-165 

linking analysis provides a model for Band 3 tetramer formation involving Glu272 and Lys353 from the 166 

cytosolic domains, and revealed a large interaction interface between Band 3 and ankyrin [33*]. 167 

Additionally, this analysis showed that GPA interacts with cdAE1 [33*], which also interacts with 168 

Glu658 in TM8/9 of mdAE1 to create the Wright blood group antigen [42]. Additional interactions were 169 

proposed for cytosolic loops of mdAE1 with protein 4.1 and protein 4.2, two adaptor proteins involved 170 

in maintaining cytoskeletal interactions. However, the significance of protein 4.2-mdAE1 associations 171 

are unclear as an enhancement effect on Band 3 anion exchange by protein 4.2 was only observed in the 172 

presence of the Band 3 N terminus that contains the main protein 4.2 binding site [43].  173 

Band 3 is a protein interaction hub  174 

The human Band 3 tetrameric macro/multiprotein complex, known as the Band 3 complex in early 175 

literature, consists of a tetramer of Band 3 bound to ankyrin, protein 4.2, and GPA. Ankyrin and protein 176 

4.2 binding to Band 3 facilitates its association to the erythrocyte spectrin cytoskeleton. The Rhesus 177 

protein sub-complex comprising Rh, RhAG, LW, CD47, and Glycophorin B has also been shown to 178 

associate with the tetrameric complex [44]. In contrast, dimeric Band 3 is thought to be either freely 179 

mobile in the membrane or associated within an actin-junctional complex, the composition of which 180 

varies between species [44]. In humans, this junctional complex consists of Band 3 dimers, protein 4.1, 181 

adducin, dematin, GPC, p55, Rh, and also GLUT1 [44,45]. 182 

Several of the integral and peripheral membrane proteins that associate with Band 3 also influence its 183 

function and/or trafficking, such as GPA, which affects both [21]; carbonic anhydrase II, which forms a 184 

metabolon with Band 3 [3]; stomatin, which increased Band 3 transport activity [46]; and protein 4.2, 185 

which increased Band 3-specific chloride influx in Xenopus oocytes [43] but decreased activity in 186 
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reconstituted liposomes [47]. Of note, Aquaporin-1 was recently reported to interact with Band 3 [48], 187 

suggesting the existence of a super-complex involving Band 3, deoxyhemoglobin, CAII, and aquaporin-188 

1 to channel substrates to and from the transporters and their cognate enzyme. How Band 3 associates 189 

with so many proteins, and which regions of Band 3 are involved, still needs to be fully delineated. 190 

However, with many copies of Band 3 (1.2 x 106) available in each cell it is likely that there are many 191 

flavours of Band 3 complexes. 192 

Future prospects 193 

The crystal structures of cdAE1 and mdAE1 have provided valuable molecular insights into Band 3 194 

function and dysfunction, yet the molecular mechanism of substrate transport and Band 3’s interaction 195 

with other proteins remains elusive. Structures of the inward-facing state of mdAE1 would reveal the 196 

extent of the conformational changes associated with transport. A high-resolution structure of intact 197 

Band 3 is needed to show the relative orientation of cytosolic and membrane domains and studies of the 198 

dynamics of this interaction are needed. Single-particle electron cryo-microscopy (cryo-EM), in 199 

particular, holds considerable promise as recent improvements in microscopes and image processing 200 

have led to high-resolution structures of complex membrane transport systems [49,50]. Molecular 201 

dynamics (MD) simulations of Band 3 in complex lipid bilayers will allow the conformational changes 202 

associated with transport to be modelled in a membrane environment [7**]. MD simulations have 203 

recently been used to determine the dynamics the Band 3 TM1 signal-anchor that is responsible for 204 

integrating the protein into the ER membrane [51]. Finally, the Band 3 structure has been used to build 205 

models of other members of the human SLC4 and SLC26 transporter families and to understand the 206 

effect of disease-causing mutations on protein folding and function [7**,52*,53, 54]. We can now look 207 

forward to the challenge of determining how this transporter works at the molecular level and how it 208 
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interacts with the cytoskeleton, GPA, and a multitude of other membrane proteins to build a dynamic 209 

cellular model of Band 3 in action. 210 

Key Points 211 

 The structure of the membrane domain of human Band 3 has revealed the molecular details of the 212 

substrate-binding site and possible mechanisms of anion transport.  213 

 The structure of human Band 3 has allowed localization of disease-causing mutations and 214 

determination of their effect on protein folding and function. 215 

 Models of related SLC4 and 26 transport proteins can be built using the structure of human Band 3 216 

as a template.  217 

 The structure of intact Band 3 still needs to be determined in order to establish the relationship 218 

between the cytoplasmic and membrane domains. 219 

 Band 3 does not operate in isolation but as part of a multi-protein complex integral to the integrity 220 

and function of the red blood cell.  221 

  222 
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Figure Legends 223 

Figure 1. Structure of dimeric of mdAE1. (a-b) Cartoon representation of mdAE1 (PDB ID: 4YZF) 224 

viewed along the plane of the membrane, with H2DIDS removed from the model. The 14 TM helices are 225 

coloured from N-terminus (blue) to C-terminus (red). The dimerization interface is indicated by 226 

asterisks, the anionic substrate by a purple sphere, and substrate passage within subunit B with a grey 227 

arrow.  228 

Figure 2. Structure and topology of monomeric mdAE1 (a) The core domain comprises TM1 to 4 229 

from repeat 1 and TM8 to 11 from repeat 2, which can be superposed on top of each other, while the 230 

gate domain is made up of TM5 to 7 from repeat 1 and TM12 to 14 from repeat 2, which also superpose 231 

well. The TMs and repeats are normally intertwined, but in this figure they are separated for clarity and 232 

the pseudo-symmetry rotation axis is shown (gray circle and arrow). (b) Topology diagram of mdAE1 233 

coloured as in (a). mdAE1 contains a single N-linked glycosylation site at Asn642. (c) Close-up view of 234 

mdAE1 viewed from the extracellular space showing the core and gate domains, with K539 and K851, 235 

from TM5 and 13 respectively, and the crosslinking H2DIDS represented as sticks. 236 

Figure 3. Key residues in the substrate binding site and localization of some disease-causing 237 

mutations. (a) Close-up view of the mdAE1 substrate binding site formed at the N-termini of TM3 and 238 

TM10, which meet in the center of the protein near the middle of the membrane. R730 interacts with one 239 

of the sulfates (*) from H2DIDS. (b) Cartoon loop representation of mdAE1 in the same orientation as 240 

Fig. 2c. Residues mutated in Hereditary Stomatocytosis that induce a cation leak in mdAE1 are 241 

represented by pink spheres. Most of the mutations cluster around the interface of the core and gate 242 

domains of the protein, including within TM10 close to the substrate-binding site. 243 
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Figure 4. The mdAE1 structure provides additional context for Band 3 function. (a) Cross-section 244 

of mdAE1 subunit A (wheat surface colour with grey interior). R730 lies at the vertex of the V-shaped 245 

substrate-binding cleft that is open to the extracellular environment. (b) Schematic of possible 246 

membrane transport mechanisms that allow the molecule to alternate between outward-open and inward-247 

open conformations to provide the substrate (purple sphere) with access to different sides of the 248 

membrane. Yellow arrows indicate domain movements. (c) Cartoon representation of mdAE1 subunit A 249 

with amphipathic -helices that lie parallel to the membrane (H1-H6) colored as in Fig. 1a. 250 

  251 
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