15 research outputs found

    Light Microsopy Module, International Space Station Premier Automated Microscope

    Get PDF
    The Light Microscopy Module (LMM) was launched to the International Space Station (ISS) in 2009 and began science operations in 2010. It continues to support Physical and Biological scientific research on ISS. During 2015, if all goes as planned, five experiments will be completed: [1] Advanced Colloids Experiments with a manual sample base -3 (ACE-M-3), [2] the Advanced Colloids Experiment with a Heated Base -1 (ACE-H-1), [3] (ACE-H-2), [4] the Advanced Plant Experiment -03 (APEX-03), and [5] the Microchannel Diffusion Experiment (MDE). Preliminary results, along with an overview of present and future LMM capabilities will be presented; this includes details on the planned data imaging processing and storage system, along with the confocal upgrade to the core microscope. [1] New York University: Paul Chaikin, Andrew Hollingsworth, and Stefano Sacanna, [2] University of Pennsylvania: Arjun Yodh and Matthew Gratale, [3] a consortium of universities from the State of Kentucky working through the Experimental Program to Stimulate Competitive Research (EPSCoR): Stuart Williams, Gerold Willing, Hemali Rathnayake, et al., [4] from the University of Florida and CASIS: Anna-Lisa Paul and Rob Ferl, and [5] from the Methodist Hospital Research Institute from CASIS: Alessandro Grattoni and Giancarlo Canavese

    The C. elegans Opa1 Homologue EAT-3 Is Essential for Resistance to Free Radicals

    Get PDF
    The C. elegans eat-3 gene encodes a mitochondrial dynamin family member homologous to Opa1 in humans and Mgm1 in yeast. We find that mutations in the C. elegans eat-3 locus cause mitochondria to fragment in agreement with the mutant phenotypes observed in yeast and mammalian cells. Electron microscopy shows that the matrices of fragmented mitochondria in eat-3 mutants are divided by inner membrane septae, suggestive of a specific defect in fusion of the mitochondrial inner membrane. In addition, we find that C. elegans eat-3 mutant animals are smaller, grow slower, and have smaller broodsizes than C. elegans mutants with defects in other mitochondrial fission and fusion proteins. Although mammalian Opa1 is antiapoptotic, mutations in the canonical C. elegans cell death genes ced-3 and ced-4 do not suppress the slow growth and small broodsize phenotypes of eat-3 mutants. Instead, the phenotypes of eat-3 mutants are consistent with defects in oxidative phosphorylation. Moreover, eat-3 mutants are hypersensitive to paraquat, which promotes damage by free radicals, and they are sensitive to loss of the mitochondrial superoxide dismutase sod-2. We conclude that free radicals contribute to the pathology of C. elegans eat-3 mutants

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Conformation-Specific Chemical Probes for Amyloid-

    Full text link
    The age-dependent accumulation of amyloid-beta (A-beta) is linked to the pathology of Alzheimer’s disease (AD). Both in vitro and in vivo, A-beta assembles into diverse quaternary conformations, including low-molecular weight structures (e.g. dimers, trimers, and tetramers), globular oligomers, protofibrils, and fibrils. Although these assemblies have been identified and partially characterized, the correlations between A-beta conformation and neurotoxicity remain unclear. Probes that differentiate between A-beta species are likely to be critical in answering this important question. The purpose of this study is to develop small molecules that report on the presence of specific A-beta conformations. In this effort, we pursued three distinct avenues. In the first approach, we characterized the binding of well-known amyloid probes to different A-beta morphologies. In doing so, we established the profile of these widely used A-beta markers and found that most of them lack the ability to differentiate between A-beta conformers. Next, we used unbiased fluorescence screening methods to discover the first class of chemical probes, indoles, which selectively interact with pre-fibrillar amyloids. Further, we leveraged these compounds to develop a rapid, inexpensive spectroscopic assay for monitoring pre-fibril levels in vitro. Finally, we used computational design to build multivalent peptide-based ligands that target the earliest A-beta aggregates, including trimers and tetramers. We found that these probes do not recognize A-beta monomers or fibrils, and that they retain specificity in human cerebrospinal fluid. Together these studies have established the first chemical probes that target specific A-beta conformations. This work demonstrated that small molecules are indeed capable of discerning between A-beta assemblies, which contributes to our basic knowledge about the properties of A-beta aggregates. Moreover, these scaffolds are expected to become useful tools for defining how A-beta structure correlates with neurotoxicity in AD.Ph.D.Biological ChemistryUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/84429/1/aareinke_1.pd

    Case Studies in Politics, Femininities, and Masculinities

    No full text
    Please click the links below to view more information about each presentation. “Honey Badgers, Tigers, and Grizzlies, Oh My: Toward an Intersectional Analysis of Ferocious Femininity” Ashley A. Mattheis, University of North Carolina at Chapel Hill “How to be a Good American: Lessons in Citizenship from the First Ladies of the United States” Jonathan Foland, University of North Carolina at Chapel Hill “Surviving the Velvet Hammer: Analyzing the Criminalization of Working-Class Mothers in a Neoliberal Context” Grace E. Reinke, Louisiana State University and Agricultural & Mechanical College “Re-enforcing Traditional Models of Masculinities in Selected Nigerian Adverts” Adebisi Adetutu Ogungbesan, University of Ibada

    Sex-specific innate immunity and ageing in long-lived fresh water turtles (Kinosternon flavescens: Kinosternidae)

    Get PDF
    Background The progressive deregulation of the immune system with age, termed immunosenescence, has been well studied in mammalian systems, but studies of immune function in long-lived, wild, non-mammalian populations are scarce. In this study we leverage a 38-year mark-recapture study to quantify the relationships among age, sex, survival, reproductive output and the innate immune system in a long-lived reptile, yellow mud turtles (Kinosternon flavescens; Testudines; Kinosternidae). Methods We estimated rates of survival and age-specific mortality by sex based on mark-recapture data for 1530 adult females and 860 adult males over 38 years of captures. We analyzed bactericidal competence (BC), and two immune responses to foreign red blood cells - natural antibody-mediated haemagglutination (NAbs), and complement-mediated haemolysis ability (Lys) - in 200 adults (102 females; 98 males) that ranged from 7 to 58 years of age captured in May 2018 during their emergence from brumation, and for which reproductive output and long-term mark-recapture data were available. Results We found that females are smaller and live longer than males in this population, but the rate of accelerating mortality across adulthood is the same for both sexes. In contrast, males exhibited higher innate immunity than females for all three immune variables we measured. All immune responses also varied inversely with age, indicating immunosenescence. For females that reproduced in the preceding reproductive season, egg mass (and therefore total clutch mass) increased with age,. In addition to immunosenescence of bactericidal competence, females that produced smaller clutches also had lower bactericidal competence. Conclusions Contrary to the general vertebrate pattern of lower immune responses in males than females (possibly reflecting the suppressive effects of androgens), we found higher levels of all three immune variables in males. In addition, contrary to previous work that found no evidence of immunosenescence in painted turtles or red-eared slider turtles, we found a decrease in bactericidal competence, lysis ability, and natural antibodies with age in yellow mud turtles. Background Ageing in many vertebrate systems is characterized by organismal senescence – declining efficiency and performance of physiological and cellular processes [1] leading to declining age-specific survival and fertility with advancing age [2]. Studies of ageing in wild populations of vertebrates have often focused on quantifying age-related changes in fecundity and mortality [3], but less often on physiological mechanisms that may contribute to such demographic ageing (e.g., [4,5,6]). One such candidate physiological mechanism is immune function, which plays a critical role in survival. Reduced immune function has been shown to negatively impact survival and reproduction [6,7,8]. The progressive deregulation of the immune system with age, termed immunosenescence, has been well studied in humans for both innate immunity (whose dysregulation with age can lead to chronic inflammation [9]), and acquired immunity, where the best studied changes are an increase in memory T cells and decrease in naïve T cells with advancing age (but here too, immunosenescence remains enigmatic [10]). However, age-specific changes in the immune system of long-lived, wild, non-mammalian populations are not well described in the literature, and studies focusing on reptile immunosenescence are even more rare (reviewed in [8]).This article is published as Bronikowski, A.M., Hedrick, A.R., Kutz, G.A. et al. Sex-specific innate immunity and ageing in long-lived fresh water turtles (Kinosternon flavescens: Kinosternidae). Immun Ageing 20, 11 (2023). https://doi.org/10.1186/s12979-023-00335-x. Posted with permission.This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data

    Dual-reporter high-throughput screen for small-molecule in vivo inhibitors of plasminogen activator inhibitor type-1 yields a clinical lead candidate

    No full text
    Plasminogen activator inhibitor type-1 (PAI-1) is a serine prote-ase inhibitor (serpin) implicated in numerous pathological processes, including coronary heart disease, arterial and venous thrombosis, and chronic fibrotic diseases. These associations have made PAI-1 an attractive pharmaceutical target. However, the complexity of the serpin inhibitory mechanism, the inherent metastability of serpins, and the high-affinity association of PAI-1 with vitronectin in vivo have made it difficult to identify pharmacologi-cally effective small-molecule inhibitors. Moreover, the majority of current small-molecule PAI-1 inhibitors are poor pharmaceutical candidates. To this end and to find leads that can be efficiently applied to in vivo settings, we developed a dual-reporter high-throughput screen (HTS) that reduced the rate of nonspecific and promiscuous hits and identified leads that inhibit human PAI-1 in the high-protein environments present in vivo. Using this system, we screened \u3e152,000 pure compounds and 27,000 natural product extracts (NPEs), reducing the apparent hit rate by almost 10-fold compared with previous screening approaches. Furthermore, screening in a high-protein environment permitted the identification of compounds that retained activity in both ex vivo plasma and in vivo. Following lead identification, subsequent medicinal chemistry and structure–activity relationship (SAR) studies identified a lead clinical candidate, MDI-2268, having excellent pharmacokinetics, potent activity against vitronectin-bound PAI-1 in vivo, and efficacy in a murine model of venous thrombosis. This rigorous HTS approach eliminates promiscuous candidate leads, significantly accelerates the process of identifying PAI-1 inhibitors that can be rapidly deployed in vivo, and has enabled identification of a potent lead compound

    In vitro modeling of the microvascular occlusion and thrombosis that occur in hematologic diseases using microfluidic technology

    No full text
    In hematologic diseases, such as sickle cell disease (SCD) and hemolytic uremic syndrome (HUS), pathological biophysical interactions among blood cells, endothelial cells, and soluble factors lead to microvascular occlusion and thrombosis. Here, we report an in vitro “endothelialized” microfluidic microvasculature model that recapitulates and integrates this ensemble of pathophysiological processes. Under controlled flow conditions, the model enabled quantitative investigation of how biophysical alterations in hematologic disease collectively lead to microvascular occlusion and thrombosis. Using blood samples from patients with SCD, we investigated how the drug hydroxyurea quantitatively affects microvascular obstruction in SCD, an unresolved issue pivotal to understanding its clinical efficacy in such patients. In addition, we demonstrated that our microsystem can function as an in vitro model of HUS and showed that shear stress influences microvascular thrombosis/obstruction and the efficacy of the drug eptifibatide, which decreases platelet aggregation, in the context of HUS. These experiments establish the versatility and clinical relevance of our microvasculature-on-a-chip model as a biophysical assay of hematologic pathophysiology as well as a drug discovery platform
    corecore