1,689 research outputs found

    Quantum Electrodynamic Control of Matter: Cavity-Enhanced Ferroelectric Phase Transition

    No full text
    The light-matter interaction can be utilized to qualitatively alter physical properties of materials. Recent theoretical and experimental studies have explored this possibility of controlling matter by light based on driving many-body systems via strong classical electromagnetic radiation, leading to a time-dependent Hamiltonian for electronic or lattice degrees of freedom. To avoid inevitable heating, pump-probe setups with ultrashort laser pulses have so far been used to study transient light-induced modifications in materials. Here, we pursue yet another direction of controlling quantum matter by modifying quantum fluctuations of its electromagnetic environment. In contrast to earlier proposals on light-enhanced electron-electron interactions, we consider a dipolar quantum many-body system embedded in a cavity composed of metal mirrors and formulate a theoretical framework to manipulate its equilibrium properties on the basis of quantum light-matter interaction. We analyze hybridization of different types of the fundamental excitations, including dipolar phonons, cavity photons, and plasmons in metal mirrors, arising from the cavity confinement in the regime of strong light-matter interaction. This hybridization qualitatively alters the nature of the collective excitations and can be used to selectively control energy-level structures in a wide range of platforms. Most notably, in quantum paraelectrics, we show that the cavity-induced softening of infrared optical phonons enhances the ferroelectric phase in comparison with the bulk materials. Our findings suggest an intriguing possibility of inducing a superradiant-type transition via the light-matter coupling without external pumping. We also discuss possible applications of the cavity-induced modifications in collective excitations to molecular materials and excitonic devices

    Finite-temperature reaction-rate formula: Finite volume system, detailed balance, T→0T \to 0 limit, and cutting rules

    Get PDF
    A complete derivation, from first principles, of the reaction-rate formula for a generic process taking place in a heat bath of finite volume is given. It is shown that the formula involves no finite-volume correction. Through perturbative diagrammatic analysis of the resultant formula, the detailed-balance formula is derived. The zero-temperature limit of the formula is discussed. Thermal cutting rules, which are introduced in previous work, are compared with those introduced by other authors.Comment: 35pages (text) plus 4pages (figures

    Is \lq\lq Heavy Quark Damping Rate Puzzle'' in Hot QCD Really the Puzzle?

    Get PDF
    Within the framework of perturbative resummation scheme of Pisarski and Braaten, the decay- or damping-rate of a moving heavy quark (muon) to leading order in weak coupling in hot QCD (QED) is examined. Although, as is well known, the conventionally-defined damping rate diverges logarithmically at the infrared limit, shown is that no such divergence appears in the physically measurable decay rate. The cancellation occurs between the contribution from the \lq\lq real'' decay diagram and the contribution from the diagrams with \lq\lq thermal radiative correction''.Comment: 13pages, OCU-PHYS-15

    Finite Temperature Pion Scattering to one-loop in Chiral Perturbation Theory

    Get PDF
    We present the pion-pion elastic scattering amplitude at finite temperature to one-loop in Chiral Perturbation Theory. The thermal scattering amplitude properly defined allows to generalize the perturbative unitarity relation to the T≠0T\neq 0 case. Our result provides a model independent prediction of an enhanced pion-pion low-energy phase shift with the temperature and it has physical applications within the context of Relativistic Heavy Ion Collisions.Comment: 11 pages, 2 figures. Some references and clarifying comments added and new figures included. Final version to appear in Physics Letters

    Different mechanics of snap-trapping in the two closely related carnivorous plants Dionaea muscipula and Aldrovanda vesiculosa

    Full text link
    The carnivorous aquatic Waterwheel Plant (Aldrovanda vesiculosa L.) and the closely related terrestrial Venus Flytrap (Dionaea muscipula SOL. EX J. ELLIS) both feature elaborate snap-traps, which shut after reception of an external mechanical stimulus by prey animals. Traditionally, Aldrovanda is considered as a miniature, aquatic Dionaea, an assumption which was already established by Charles Darwin. However, videos of snapping traps from both species suggest completely different closure mechanisms. Indeed, the well-described snapping mechanism in Dionaea comprises abrupt curvature inversion of the two trap lobes, while the closing movement in Aldrovanda involves deformation of the trap midrib but not of the lobes, which do not change curvature. In this paper, we present the first detailed mechanical models for these plants, which are based on the theory of thin solid membranes and explain this difference by showing that the fast snapping of Aldrovanda is due to kinematic amplification of the bending deformation of the midrib, while that of Dionaea unambiguously relies on the buckling instability that affects the two lobes.Comment: accepted in Physical Review

    Exploring the Kondo model in and out of equilibrium with alkaline-earth atoms

    Full text link
    We propose a scheme to realize the Kondo model with tunable anisotropy using alkaline-earth atoms in an optical lattice. The new feature of our setup is Floquet engineering of interactions using time-dependent Zeeman shifts, that can be realized either using state-dependent optical Stark shifts or magnetic fields. The properties of the resulting Kondo model strongly depend on the anisotropy of the ferromagnetic interactions. In particular, easy-plane couplings give rise to Kondo singlet formation even though microscopic interactions are all ferromagnetic. We discuss both equilibrium and dynamical properties of the system that can be measured with ultracold atoms, including the impurity spin susceptibility, the impurity spin relaxation rate, as well as the equilibrium and dynamical spin correlations between the impurity and the ferromagnetic bath atoms. We analyze the non-equilibrium time evolution of the system using a variational non-Gaussian approach, which allows us to explore coherent dynamics over both short and long timescales, as set by the bandwidth and the Kondo singlet formation, respectively. In the quench-type experiments, when the Kondo interaction is suddenly switched on, we find that real-time dynamics shows crossovers reminiscent of poor man's renormalization group flow used to describe equilibrium systems. For bare easy-plane ferromagnetic couplings, this allows us to follow the formation of the Kondo screening cloud as the dynamics crosses over from ferromagnetic to antiferromagnetic behavior. On the other side of the phase diagram, our scheme makes it possible to measure quantum corrections to the well-known Korringa law describing the temperature dependence of the impurity spin relaxation rate. Theoretical results discussed in our paper can be measured using currently available experimental techniques.Comment: 22 pages, 12 figure

    Water recycling system using thermopervaporation method

    Get PDF
    A water recycling system concept for the crew of the space station is presented. A thermopervaporation method is a new key technology used for the distillation process, utilizing a hydrophobic membrane. An experimental study of thermopervaporation revealed that the permeation depends on the gap between the membrane and the cooling surface in the condensation room: the steam diffusion occurs with gaps less than 5 mm while natural convection becomes dominant with gaps more than 5 mm. A brief discussion of the system operation is also described

    Pathological activation of KIT in metastatic tumors of acral and mucosal melanomas

    Get PDF
    ArticleINTERNATIONAL JOURNAL OF CANCER. 124(4):862-868 (2009)journal articl

    Energy and pressure densities of a hot quark-gluon plasma

    Get PDF
    We calculate the energy and hydrostatic pressure densities of a hot quark-gluon plasma in thermal equilibrium through diagrammatic analyses of the statistical average, ⟨Θμν⟩\langle \Theta_{\mu \nu} \rangle, of the energy-momentum-tensor operator Θμν\Theta_{\mu \nu}. To leading order at high temperature, the energy density of the long wave length modes is consistently extracted by applying the hard-thermal-loop resummation scheme to the operator-inserted no-leg thermal amplitudes ⟨Θμν⟩\langle \Theta_{\mu \nu} \rangle. We find that, for the long wave length gluons, the energy density, being positive, is tremendously enhanced as compared to the noninteracting case, while, for the quarks, no noticeable deviation from the noninteracting case is found.Comment: 33 pages. Figures are not include

    Bogoliubov - de Gennes versus Quasiclassical Description of Josephson Structures

    Full text link
    The applicability of the quasiclassical theory of superconductivity in Josephson multi-layer structures is analyzed. The quasiclassical approach is compared with the exact theory based on the Bogoliubov - de Gennes equation. The angle and energy resolved (coarse-grain) currents are calculated using both techniques. It is shown that the two approaches agree in SIS′IS′′SIS'IS'' geometries after the coarse-grain averaging. A quantitative discrepancy, which exceeds the quasiclassical accuracy, is observed when three or more interfaces are present. The invalidity of the quasiclassical theory is attributed to the presence of closed trajectories formed by sequential reflections on the interfaces.Comment: revtex4,12 pages, 12 figure
    • …
    corecore