388 research outputs found

    The effect of supplementary ultraviolet wavelengths on broiler chicken welfare indicators

    Get PDF
    © 2018 The Authors Qualities of the light environment are important for good welfare in a number of species. In chickens, UVA light is visible and may facilitate flock interactions. UVB wavelengths promote endogenous vitamin D synthesis, which could support the rapid skeletal development of broiler chickens. The aim of the study was to investigate the impacts of Ultraviolet wavelengths (UV) on welfare indicators in broiler chickens. Day-old Ross 308 birds reared under commercially representative conditions were randomly assigned to one of three lighting treatments: A) White Light Emitting Diode (LED) and supplementary UVA LED lighting (18-hour photoperiod); B) White LED with supplementary UVA and UVB fluorescent lighting providing 30 micro watts/cm2 UVB at bird level (on for 8 h of the total photoperiod to avoid over-exposure of UVB); C) White LED control group, representative of farm conditions (18-hour photoperiod). Welfare indicators measured were; feather condition (day 24, n = 546), tonic immobility duration (day 29, n = 302), and gait quality, using the Bristol Gait Score (day 31, n = 293). Feather condition was improved in male broilers in the UVA treatment (A), compared to the control treatment (C). Birds in the UVA treatment had shorter tonic immobility durations compared to the control treatment (C), suggesting lower fearfulness. Broilers reared in UVA (A) and UVA + UVB (B) had better Bristol Gait Scores compared to the control (C). Together these results suggest UV may be beneficial for broiler chicken welfare. While treatment A and B both provided UVA, the improvements in welfare indicators were not consistent, which may be due to exposure time-dependent beneficial effects of UVA. The modification of commercial lighting regimes to incorporate UVA wavelengths for indoor-reared broiler chickens would be an achievable change with significant positive impacts on bird welfare

    Characterization the Cool KOIs. II. The M Dwarf KOI-254 and its Hot Jupiter

    Get PDF
    We report the confirmation and characterization of a transiting gas giant planet orbiting the M dwarf KOI-254 every 2.455239 days, which was originally discovered by the Kepler mission. We use radial velocity measurements, adaptive optics imaging, and near-infrared spectroscopy to confirm the planetary nature of the transit events. KOI-254 b is the first hot Jupiter discovered around an M-type dwarf star. We also present a new model-independent method of using broadband photometry to estimate the mass and metallicity of an M dwarf without relying on a direct distance measurement. Included in this methodology is a new photometric metallicity calibration based on J – K colors. We use this technique to measure the physical properties of KOI-254 and its planet. We measure a planet mass of M_P = 0.505 M_(Jup), radius R_P = 0.96 R_(Jup), and semimajor axis a = 0.030 AU, based on our measured stellar mass M_* = 0.59 M_☉ and radius R_* = 0.55 R_☉. We also find that the host star is metal-rich, which is consistent with the sample of M-type stars known to harbor giant planets

    Talking about Black Lives Matter and #MeToo

    Get PDF
    This essay explores the apparent differences and similarities between the Black Lives Matter and the #MeToo movements. In April 2019, the Wisconsin Journal of Gender, Law and Society hosted a symposium entitled “Race-Ing Justice, En-Gendering Power: Black Lives Matter and the Role of Intersectional Legal Analysis in the Twenty-First Century.” That program facilitated examination of the historical antecedents, cultural contexts, methods, and goals of these linked equality movements. Conversations continued among the symposium participants long after the end of the official program. In this essay, the symposium’s speakers memorialize their robust conversations and also dive more deeply into the phenomena, implications, and future of Black Lives Matter and #MeToo. This essay organizes around internal and external spatial metaphors and makes five schematic moves. First, internal considerations ground comparisons of the definitions, goals, and ideas of success employed by or applied to Black Lives Matter and #MeToo. Second, external concerns inspire questions about whether both movements may be better understood through the lens of intersectionality, and relatedly, what challenges these movements pose for an intersectional analysis. Third, a meta-internal framework invites inquiry into how the movements shape the daily work of scholars, teachers, lawyers, and community activists. Fourth, a dialectical external-internal frame drives questions about the movements’ effects on law and popular culture, and the reciprocal effects between those external influences and the movements themselves. Returning to an external, even forward-looking, approach, we ask what the next steps are for both movements. This five-part taxonomy frames the inquiry into where the Black Lives Matter and #MeToo movements are located individually, but also where they are co-located, and, perhaps most importantly, where they are going

    The Interrelationships of Placental Mammals and the Limits of Phylogenetic Inference

    Get PDF
    Placental mammals comprise three principal clades: Afrotheria (e.g., elephants and tenrecs), Xenarthra (e.g., armadillos and sloths), and Boreoeutheria (all other placental mammals), the relationships among which are the subject of controversy and a touchstone for debate on the limits of phylogenetic inference. Previous analyses have found support for all three hypotheses, leading some to conclude that this phylogenetic problem might be impossible to resolve due to the compounded effects of incomplete lineage sorting (ILS) and a rapid radiation. Here we show, using a genome scale nucleotide data set, microRNAs, and the reanalysis of the three largest previously published amino acid data sets, that the root of Placentalia lies between Atlantogenata and Boreoeutheria. Although we found evidence for ILS in early placental evolution, we are able to reject previous conclusions that the placental root is a hard polytomy that cannot be resolved. Reanalyses of previous data sets recover Atlantogenata + Boreoeutheria and show that contradictory results are a consequence of poorly fitting evolutionary models; instead, when the evolutionary process is better-modeled, all data sets converge on Atlantogenata. Our Bayesian molecular clock analysis estimates that marsupials diverged from placentals 157-170 Ma, crown Placentalia diverged 86-100 Ma, and crown Atlantogenata diverged 84-97 Ma. Our results are compatible with placental diversification being driven by dispersal rather than vicariance mechanisms, postdating early phases in the protracted opening of the Atlantic Ocean

    From salty to fresh—salinity processes in the Upper-ocean Regional Study-2 (SPURS-2) : diagnosing the physics of a rainfall-dominated salinity minimum

    Get PDF
    Author Posting. © The Oceanography Society, 2015. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 28, no. 1 (2015): 150-159, doi:10.5670/oceanog.2015.15.One of the notable features of the global ocean is that the salinity of the North Atlantic is about 1 psu higher than that of the North Pacific. This contrast is thought to be due to one of the large asymmetries in the global water cycle: the transport of water vapor by the trade winds across Central America and the lack of any comparable transport into the Atlantic from the Sahara Desert. Net evaporation serves to maintain high Atlantic salinities, and net precipitation lowers those in the Pacific. Because the effects on upper-ocean physics are markedly different in the evaporating and precipitating regimes, the next phase of research in the Salinity Processes in the Upper-ocean Regional Study (SPURS) must address a high rainfall region. It seemed especially appropriate to focus on the eastern tropical Pacific that is freshened by the water vapor carried from the Atlantic. In a sense, the SPURS-2 Pacific region will be looking at the downstream fate of the freshwater carried out of the SPURS-1 North Atlantic region. Rainfall tends to lower surface density and thus inhibit vertical mixing, leading to quite different physical structure and dynamics in the upper ocean. Here, we discuss the motivations for the location of SPURS-2 and the scientific questions we hope to address

    KELT-11b: A Highly Inflated Sub-Saturn Exoplanet Transiting the V=8 Subgiant HD 93396

    Full text link
    We report the discovery of a transiting exoplanet, KELT-11b, orbiting the bright (V=8.0V=8.0) subgiant HD 93396. A global analysis of the system shows that the host star is an evolved subgiant star with Teff=5370±51T_{\rm eff} = 5370\pm51 K, M=1.4380.052+0.061MM_{*} = 1.438_{-0.052}^{+0.061} M_{\odot}, R=2.720.17+0.21RR_{*} = 2.72_{-0.17}^{+0.21} R_{\odot}, log g=3.7270.046+0.040g_*= 3.727_{-0.046}^{+0.040}, and [Fe/H]=0.180±0.075 = 0.180\pm0.075. The planet is a low-mass gas giant in a P=4.736529±0.00006P = 4.736529\pm0.00006 day orbit, with MP=0.195±0.018MJM_{P} = 0.195\pm0.018 M_J, RP=1.370.12+0.15RJR_{P}= 1.37_{-0.12}^{+0.15} R_J, ρP=0.0930.024+0.028\rho_{P} = 0.093_{-0.024}^{+0.028} g cm3^{-3}, surface gravity log gP=2.4070.086+0.080{g_{P}} = 2.407_{-0.086}^{+0.080}, and equilibrium temperature Teq=171246+51T_{eq} = 1712_{-46}^{+51} K. KELT-11 is the brightest known transiting exoplanet host in the southern hemisphere by more than a magnitude, and is the 6th brightest transit host to date. The planet is one of the most inflated planets known, with an exceptionally large atmospheric scale height (2763 km), and an associated size of the expected atmospheric transmission signal of 5.6%. These attributes make the KELT-11 system a valuable target for follow-up and atmospheric characterization, and it promises to become one of the benchmark systems for the study of inflated exoplanets.Comment: 15 pages, Submitted to AAS Journal

    Characterizing the Cool KOIs II. The M Dwarf KOI-254 and its Hot Jupiter

    Full text link
    We report the confirmation and characterization of a transiting gas giant planet orbiting the M dwarf KOI-254 every 2.455239 days, which was originally discovered by the Kepler mission. We use radial velocity measurements, adaptive optics imaging and near infrared spectroscopy to confirm the planetary nature of the transit events. KOI-254b is the first hot Jupiter discovered around an M-type dwarf star. We also present a new model-independent method of using broadband photometry to estimate the mass and metallicity of an M dwarf without relying on a direct distance measurement. Included in this methodology is a new photometric metallicity calibration based on J-K colors. We use this technique to measure the physical properties of KOI-254 and its planet. We measure a planet mass of Mp = 0.505 Mjup, radius Rp = 0.96 Rjup and semimajor axis a = 0.03 AU, based on our measured stellar mass Mstar = 0.59 Msun and radius Rstar = 0.55 Rsun. We also find that the host star is metal-rich, which is consistent with the sample of M-type stars known to harbor giant planets.Comment: AJ accepted (in press

    Dark Matter Time Projection Chamber : Recent R&D Results

    Get PDF
    The Dark Matter Time Projection Chamber collaboration recently reported a dark matter limit obtained with a 10 liter time projection chamber filled with CF[subscript 4] gas. The 10 liter detector was capable of 2D tracking (perpendicular to the drift direction) and 2D fiducialization, and only used information from two CCD cameras when identifying tracks and rejecting backgrounds. Since that time, the collaboration has explored the potential benefits of photomultiplier tube and electronic charge readout to achieve 3D tracking, and particle identification for background rejection. The latest results of this effort is described here

    Relationships Between Communication, Time Pressure, Workload, Task Complexity, Logistical Issues and Group Composition in Transdisciplinary Teams: A Prospective Observational Study Across 822 Cancer Cases

    Get PDF
    Introduction: Functional perspective of team decision-making highlights the importance of understanding the relationship between team interaction/communication during a given task, the internal factors that emanate from within a group (e.g., team composition), and the external circumstances (e.g., workload and time pressures). As an underexplored area, we explored these relationships in the context of multidisciplinary team (MDT) meetings (aka tumor boards). Materials and methods: Three cancer MDTs with 44 team members were recruited from three teaching hospitals in the United Kingdom. Thirty of their weekly meetings encompassing 822 case reviews were filmed. Validated instruments were used to assess each case: Bales' Interaction Process Analysis that captures frequency of task-oriented and socio-emotional interactions/communication; and Measure of case-Discussion Complexity that captures clinical and logistic complexities. We also measured team size, disciplinary diversity, gender, time-workload pressure, and time-on-task. Partial correlation analysis controlling for team/tumor type and case complexity was used for analysis. Results: Clinical complexity positively correlated with task-oriented communication, e.g., gives opinion (r = 0.51, p 0.05), however, case reviews with more males present were associated with more tension (r = 0.09, p < 0.01) and less disagreements (r = −0.11, p < 0.01), while when more females present there were more disagreements (r = 0.10, p < 0.01) and less tension (r = −0.11, p < 0.01). Discussion: To the best of our knowledge, this is the first study to assess the relationship between MDT interaction/communication and the external/internal factors. Smaller size, gender balanced teams with core disciplines present, and streamlining workload to reduce time-workload pressure, time-on-task effects, and logistical issues appear more conducive to building and maintain optimal MDTs. Our methodology could be applied to other MDT-driven areas of healthcare
    corecore