142 research outputs found
Recommended from our members
Coated-wire-in-tube processing of bismuth-2223 superconductors
A coated-wire-in-tube (CWIT) process greatly increases the silver/superconductor interface area in silver-sheathed Bi-2223 superconductors. When the performance of CWIT samples is compared to that of conventional monofilaments made with the same powder, critical current density increases significantly with increased silver/superconductor interface area. Benefits of increasing the silver/superconductor interface area are realized only when there is good continuity of the coated wires, and this requires a mechanical deformation sequence to preserve good continuity of the wires
Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease
Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.
Amino acid sequence of the tryptic peptide containing the catalytic-site thiol group of bovine liver uridine diphosphate glucose dehydrogenase
Recommended from our members
Effect of lead content on phase evolution and microstructural development in Ag-clad Bi-2223 composite conductors
A two powder process was used to prepare silver-sheathed monofilamentary Bi{sub 1.8}Pb{sub x}Sr{sub 1.98}Ca{sub 1.97}Cu{sub 3.08}O{sub y} (Bi-2223) tapes with varying lead contents, x, from 0.2 to 0.5. The resulting tapes were subjected to thermomechanical processing and then characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray analysis (EDX). Layered phase texture was accessed using image analysis software on scanned SEM micrographs. Transport currents were measured at 77 K and zero field by the four-probe method. It was found that tapes with low lead content (X = 0.2 and 0.25) showed incomplete conversion to Bi-2223, had small grain size and poor c-axis texture. Tapes having higher lead content (x = 0.4 and 0.5) also showed incomplete conversion and the presence of lead-rich secondary phases. Tapes with lead content x = 0.3 and 0.35 showed complete conversion to Bi-2223, and had the least amount of secondary phases, the best c-axis texture, and the highest transport current (j{sub c}). The carbon content of the precursor powder also had a strong influence on secondary-phase chemistry
Binding of α2ML1 to the Low Density Lipoprotein Receptor-Related Protein 1 (LRP1) Reveals a New Role for LRP1 in the Human Epidermis
Ultrafast laser micro-nano structuring of transparent materials with high aspect ratio
Ultrafast lasers are ideal tools to process transparent materials because
they spatially confine the deposition of laser energy within the material's
bulk via nonlinear photoionization processes. Nonlinear propagation and
filamentation were initially regarded as deleterious effects. But in the last
decade, they turned out to be benefits to control energy deposition over long
distances. These effects create very high aspect ratio structures which have
found a number of important applications, particularly for glass separation
with non-ablative techniques. This chapter reviews the developments of
in-volume ultrafast laser processing of transparent materials. We discuss the
basic physics of the processes, characterization means, filamentation of
Gaussian and Bessel beams and provide an overview of present applications
Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction, GALACTIC‐HF: baseline characteristics and comparison with contemporary clinical trials
Aims:
The safety and efficacy of the novel selective cardiac myosin activator, omecamtiv mecarbil, in patients with heart failure with reduced ejection fraction (HFrEF) is tested in the Global Approach to Lowering Adverse Cardiac outcomes Through Improving Contractility in Heart Failure (GALACTIC‐HF) trial. Here we describe the baseline characteristics of participants in GALACTIC‐HF and how these compare with other contemporary trials.
Methods and Results:
Adults with established HFrEF, New York Heart Association functional class (NYHA) ≥ II, EF ≤35%, elevated natriuretic peptides and either current hospitalization for HF or history of hospitalization/ emergency department visit for HF within a year were randomized to either placebo or omecamtiv mecarbil (pharmacokinetic‐guided dosing: 25, 37.5 or 50 mg bid). 8256 patients [male (79%), non‐white (22%), mean age 65 years] were enrolled with a mean EF 27%, ischemic etiology in 54%, NYHA II 53% and III/IV 47%, and median NT‐proBNP 1971 pg/mL. HF therapies at baseline were among the most effectively employed in contemporary HF trials. GALACTIC‐HF randomized patients representative of recent HF registries and trials with substantial numbers of patients also having characteristics understudied in previous trials including more from North America (n = 1386), enrolled as inpatients (n = 2084), systolic blood pressure < 100 mmHg (n = 1127), estimated glomerular filtration rate < 30 mL/min/1.73 m2 (n = 528), and treated with sacubitril‐valsartan at baseline (n = 1594).
Conclusions:
GALACTIC‐HF enrolled a well‐treated, high‐risk population from both inpatient and outpatient settings, which will provide a definitive evaluation of the efficacy and safety of this novel therapy, as well as informing its potential future implementation
Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications
We report the fabrication of a large mode area tellurite holey fiber from an extruded perform, with a mode area of 3000µm2. Robust single-mode guidance at 1.55µm was confirmed by both optical measurement and numerical simulation. The propagation loss was measured as 2.9dB/m at 1.55µm. A broad and flat supercontinuum from 0.9 to 2.5µm with 6mW output was obtained with a 9cm length of this fiber
Extrasolar planet search and characterisation
Over two hundred extrasolar planets have been discovered to date with various methods. This thesis reports on searching for extrasolar planets and characterising them by simulating their atmospheres. We used open clusters as targets for deep transit searches, with specific emphasis on the University of St. Andrews Planet Search at the Isaac Newton Telescope. We reduced CCD photometry and described the algorithm we used to search for transits. We estimated the number of transits we expect from our data. We then reduced photometry for the open cluster NGC 6940. From that data we found 18 low-amplitude, short-duration events, though none are transiting planets. They are all eclipsing binary stars. However, our null result constrains the number of planets around M dwarfs, the most numerous stars in our sample. In order to characterise reflected light from extrasolar planets, we built a three-dimensional Monte Carlo based radiation transfer model of extrasolar planetary atmospheres. We detailed the input parameters of the model, and show results of various models, focusing especially on the fractal nature of the clouds of our models, because these are the first three dimensional radiation transfer models of extrasolar planet atmospheres. We found very low geometric albedos in our simulations. Using data specific to the transiting planet HD 209458b, we built a model atmosphere with Rayleigh-scattering hydrogen gas and clouds of enstatite and iron. We show in several models the rarity of a bright HD 209458b, and conclude with some explanations on why extrasolar planets are likely dark and not detected with reflected light
- …
