1,157 research outputs found
Determination of elastic and viscoplastic material properties obtained from indentation tests using a combined finite element analysis and optimization approach
Conventional indentation tests do not provide an accurate estimation of viscoplastic material properties. In this work, a combined finite element analysis and optimization approach is developed for the determination of elastic–plastic and creep material properties using only a single indentation loading–unloading curve based on a two-layer viscoplasticity model. Utilizing the indentation loading–unloading curve obtained from a finite element-simulated experiment with a spherical and a conical indenter, a set of six key material properties (Young’s modulus, yield stress, work hardening exponent and three creep parameters) can be determined. Non-linear optimization algorithms are used with different sets of initial material properties, leading to good agreements with the numerically simulated target loading–unloading curves
An investigation into reinforced and functionally graded lattice structures
Lattice structures are regarded as excellent candidates for use in lightweight energy absorbing applications, such as crash protection. In this paper we investigate the crushing behaviour, mechanical properties and energy absorption of lattices made by an additive manufacturing (AM) process. Two types of lattice were examined; body-centred-cubic (BCC) and a reinforced variant called BCCz. The lattices were subject to compressive loads in two orthogonal directions, allowing an assessment of their mechanical anisotropy to be made. We also examined functionally graded versions of these lattices, which featured a density gradient along one direction. The graded structures exhibited distinct crushing behaviour, with a sequential collapse of cellular layers preceding full densification. For the BCCz lattice, the graded structures were able to absorb around 114% more energy per unit volume than their non-graded counterparts before full densification, 1371 +or- 9 kJ/m3 vs. 640 +or- 10 kJ/m3. This highlights the strong potential for functionally graded lattices to be used in energy absorbing applications. Finally, we determined several of the Gibson-Ashby coefficients relating the mechanical properties of lattice structures to their density; these are crucial in establishing the constitutive models required for effective lattice design. These results improve the current understanding of AM lattices, and will enable the design of sophisticated, functional, lightweight components in the future
Recommended from our members
Quadrotor multibody modelling by vehiclesim: adaptive technique for oscillations in a PVA control system
The work presented here covers the detailed modelling and trajectory control for an elastic bladed quadrotor vehicle. The benefits of using VehicleSim modelling software are also discussed. The authors present a full elastic structural and dynamical model as well as two different aerodynamic models. These two aerodynamic models differ from each other on their level of complexity and therefore, accuracy. The control methodology employed to stabilize and guide the vehicle is PVA (ProportionalVelocity-Acceleration), derived and implemented by using Simulink. As it will be shown, it stabilises and provides satisfactory quadrotor trajectory tracking. Since the control methodology feeds back the acceleration of the vehicle, and this acceleration has an oscillating nature, an adaptive process has been designed and introduced into the vehicle’s model in order to avoid the oscillations’ transmission to the control system, showing how it reduces the amplitude of the control actions
oscillations.
Results of simulations and discussion on them are also provided at the end of this
article
Energy Consumption Characterization and Reduction Strategies for Milling Machine Tool Use
Since machine tools are used extensively throughout their functional life and consequently consuming valuable natural resources and emitting harmful pollutants during this time, this study reviews strategies for characterizing and reducing the energy consumption of milling machine tools during their use. The power demanded by a micromachining center while cutting low carbon steel under varied material removal rates was measured to model the specific energy of the machine tool. Thereafter the power demanded was studied for cutting aluminum and polycarbonate work pieces for the purpose of comparing the difference in cutting power demand relative to that of steel
Design principles of hair-like structures as biological machines
Hair-like structures are prevalent throughout biology and frequently act to sense or alter interactions with an organism's environment. The overall shape of a hair is simple: a long, filamentous object that protrudes from the surface of an organism. This basic design, however, can confer a wide range of functions, owing largely to the flexibility and large surface area that it usually possesses. From this simple structural basis, small changes in geometry, such as diameter, curvature and inter-hair spacing, can have considerable effects on mechanical properties, allowing functions such as mechanosensing, attachment, movement and protection. Here, we explore how passive features of hair-like structures, both individually and within arrays, enable diverse functions across biology. Understanding the relationships between form and function can provide biologists with an appreciation for the constraints and possibilities on hair-like structures. Additionally, such structures have already been used in biomimetic engineering with applications in sensing, water capture and adhesion. By examining hairs as a functional mechanical unit, geometry and arrangement can be rationally designed to generate new engineering devices and ideas
- …