3,637 research outputs found
Dynamic Failure in Amorphous Solids via a Cavitation Instability
The understanding of dynamic failure in amorphous materials via the
propagation of free boundaries like cracks and voids must go beyond elasticity
theory, since plasticity intervenes in a crucial and poorly understood manner
near the moving free boundary. In this Letter we focus on failure via a
cavitation instability in a radially-symmetric stressed material, set up the
free boundary dynamics taking both elasticity and visco-plasticity into
account, using the recently proposed athermal Shear Transformation Zone theory.
We demonstrate the existence (in amorphous systems) of fast cavitation modes
accompanied by extensive plastic deformations and discuss the revealed physics.Comment: 4 pages, 4 figure
Experimental characterization of thermally-activated artificial muscles based on coiled nylon fishing lines
The discovery of an innovative class of thermally activated actuators based on twisted polymeric fibres has opened new horizons toward the development of effective devices that can be easily manufactured using inexpensive materials such as fishing lines or sewing threads. These new devices show large deformations when heated together with promising performance in terms of energy and power densities. With the aim of providing information and data useful for the future engineering applications, we present the results of a thermo-mechanical characterization conducted on a specific type of twisted polymeric fibre (i.e. nylon-made coiled actuators) that is considered particularly promising. A custom experimental test-bench and procedure have been developed and employed to run isothermal and isometric tensile tests on a set of specimens that are fabricated with a simple and repeatable process. The results of the experiments highlight some important issues related to the response of these actuators such as hysteresis, repeatability, predictability and stored elastic energy
Nonlocal Electrodynamics of Rotating Systems
The nonlocal electrodynamics of uniformly rotating systems is presented and
its predictions are discussed. In this case, due to paucity of experimental
data, the nonlocal theory cannot be directly confronted with observation at
present. The approach adopted here is therefore based on the correspondence
principle: the nonrelativistic quantum physics of electrons in circular
"orbits" is studied. The helicity dependence of the photoeffect from the
circular states of atomic hydrogen is explored as well as the resonant
absorption of a photon by an electron in a circular "orbit" about a uniform
magnetic field. Qualitative agreement of the predictions of the classical
nonlocal electrodynamics with quantum-mechanical results is demonstrated in the
correspondence regime.Comment: 23 pages, no figures, submitted for publicatio
Water Abundance in Molecular Cloud Cores
We present Submillimeter Wave Astronomy Satellite (SWAS) observations of the
1_{10}-1_{01} transition of ortho-water at 557 GHz toward 12 molecular cloud
cores. The water emission was detected in NGC 7538, Rho Oph A, NGC 2024, CRL
2591, W3, W3(OH), Mon R2, and W33, and was not detected in TMC-1, L134N, and
B335. We also present a small map of the water emission in S140. Observations
of the H_2^{18}O line were obtained toward S140 and NGC 7538, but no emission
was detected. The abundance of ortho-water relative to H_2 in the giant
molecular cloud cores was found to vary between 6x10^{-10} and 1x10^{-8}. Five
of the cloud cores in our sample have previous water detections; however, in
all cases the emission is thought to arise from hot cores with small angular
extents. The water abundance estimated for the hot core gas is at least 100
times larger than in the gas probed by SWAS. The most stringent upper limit on
the ortho-water abundance in dark clouds is provided in TMC-1, where the
3-sigma upper limit on the ortho-water fractional abundance is 7x10^{-8}.Comment: 5 pages, 3 Postscript figures, uses aastex.cls, emulateapj5.sty
(included), and apjfonts.sty (included
The Distribution of Water Emission in M17SW
We present a 17-point map of the M17SW cloud core in the 1_{10}-1_{01}
transition of ortho-water at 557 GHz obtained with the Submillimeter Wave
Astronomy Satellite. Water emission was detected in 11 of the 17 observed
positions. The line widths of the water emission vary between 4 and 9 km
s^{-1}, and are similar to other emission lines that arise in the M17SW core. A
direct comparison is made between the spatial extent of the water emission and
the ^{13}CO J = 5\to4 emission; the good agreement suggests that the water
emission arises in the same warm, dense gas as the ^{13}CO emission. A spectrum
of the H_2^{18}O line was also obtained at the center position of the cloud
core, but no emission was detected. We estimate that the average abundance of
ortho-water relative to H_2 within the M17 dense core is approximately
1x10^{-9}, 30 times smaller than the average for the Orion core. Toward the H
II region/molecular cloud interface in M17SW the ortho-water abundance may be
about 5 times larger than in the dense core.Comment: 4 pages, 3 Postscript figures, uses aastex.cls, emulateapj5.sty
(included), and apjfonts.sty (included
Star formation in z>1 3CR host galaxies as seen by Herschel
We present Herschel (PACS and SPIRE) far-infrared (FIR) photometry of a
complete sample of z>1 3CR sources, from the Herschel GT project The Herschel
Legacy of distant radio-loud AGN (PI: Barthel). Combining these with existing
Spitzer photometric data, we perform an infrared (IR) spectral energy
distribution (SED) analysis of these landmark objects in extragalactic research
to study the star formation in the hosts of some of the brightest active
galactic nuclei (AGN) known at any epoch. Accounting for the contribution from
an AGN-powered warm dust component to the IR SED, about 40% of our objects
undergo episodes of prodigious, ULIRG-strength star formation, with rates of
hundreds of solar masses per year, coeval with the growth of the central
supermassive black hole. Median SEDs imply that the quasar and radio galaxy
hosts have similar FIR properties, in agreement with the orientation-based
unification for radio-loud AGN. The star-forming properties of the AGN hosts
are similar to those of the general population of equally massive non-AGN
galaxies at comparable redshifts, thus there is no strong evidence of universal
quenching of star formation (negative feedback) within this sample. Massive
galaxies at high redshift may be forming stars prodigiously, regardless of
whether their supermassive black holes are accreting or not.Comment: 30 pages, 13 figures, 4 tables. Accepted for publication in A&
An almost head-on collision as the origin of two off-centre rings in the Andromeda galaxy
The unusual morphology of the Andromeda Spiral (Messier 31, the closest
spiral galaxy to the Milky Way) has long been an enigma. Although regarded for
decades as showing little evidence of a violent history, M~31 has a well-known
outer ring of star formation at a radius of 10 kpc whose center is offset from
the galaxy nucleus. In addition, the outer galaxy disk is warped as seen at
both optical and radio wavelengths. The halo contains numerous loops and
ripples. Here we report the discovery, based on analysis of previously-obtained
data, of a second, inner dust ring with projected dimensions 1.5 by 1 kpc and
offset by ~0.5kpc from the center of the galaxy. The two rings appear to be
density waves propagating in the disk. Numerical simulations offer a completely
new interpretation for the morphology of M31: both rings result from a
companion galaxy plunging head-on through the center of the disk of M31. The
most likely interloper is M32. Head-on collisions between galaxies are rare,
but it appears nonetheless that one took place 210 million years ago in our
Local Group of galaxies.Comment: Published in Nature, October 19th issue. Higher resolution figures
available at http://aramis.obspm.fr/~bournaud/M31_block_highres.pd
- …