8 research outputs found

    Twenty-five years of geodetic measurements along the Tadjoura-Asal rift system, Djibouti, East Africa

    No full text
    International audienceSince most of Tadjoura-Asal rift system sits on dry land in the Afar depression near the triple junction between the Arabia, Somalia, and Nubia plates, it is an ideal natural laboratory for studying rifting processes. We analyze these processes in light of a time series of geodetic measurements from 1978 through. A network of about 30 GPS sites covers the Republic of Djibouti. Additional points were also measured in Yemen and Ethiopia. Stations lying in the Danakil block have almost the same velocity as Arabian plate, indicating that opening near the southern tip of the Red Sea is almost totally accommodated in the Afar depression. Inside Djibouti, the Asal-Ghoubbet rift system accommodates 16 ± 1 mm/yr of opening perpendicular to the rift axis and exhibits a pronounced asymmetry with essentially null deformation on its southwestern side and significant deformation on its northeastern side. This rate, slightly higher than the large-scale Arabia-Somalia motion (13 ± 1 mm/yr), suggests transient variations associated with relaxation processes following the Asal-Ghoubbet seismovolcanic sequence of 1978. Inside the rift, the deformation pattern exhibits a clear two-dimensional pattern. Along the rift axis, the rate decreases to the northwest, suggesting propagation in the same direction. Perpendicular to the rift axis, the focus of the opening is clearly shifted to the northeast, relative to the topographic rift axis, in the ''Petit Rift,'' a rift-in-rift structure, containing most of the active faults and the seismicity. Vertical motions, measured by differential leveling, show the same asymmetric pattern with a bulge of the northeastern shoulder. Although the inner floor of the rift is subsiding with respect to the shoulders, all sites within the rift system show uplift at rates varying from 0 to 10 mm/yr with respect to a far-field reference outside the rift

    Tensional fissures in sediments as signature of rift tectonics in the Main Ethiopian Rift

    No full text
    The Main Ethiopian Rift, which forms the northern part of the East African Rift, is a regime of extensional tectonics with geodetically measured mean spreading rate of 3.6 mm(yr)-1. Earlier studies have shown that the effects of this extension are manifested mainly through earthquakes, faults and volcanism. Recently, with the observations of the occurrence of fissures of tectonic origin on the sediment cover of the rift floor, an additional effect of the extensional process has been identified. The importance of this effect in characterizing rift tectonics could be commensurate with the areal size of the sedimentary cover of the rift floor which is substantial. The object of this study is to assess the significance of these tectonic-induced fissures as signature of the rifting process by comparing them to earthquake and volcanic activities. It is shown that fissures on sediments are significant indicators of rift tectonics with a corresponding role as agents of strain release. SINET: Ethiopian Journal of Science Vol. 23, No. 1 (June 2000), pp. 103-113 Key words/phrases: Earthquakes, fissures, sediments, signature, strain release, tectonic

    Kinematics of the southern Red Sea-Afar Triple Junction and implications for plate dynamics

    No full text
    International audienceGPS measurements adjacent to the southern Red Sea and Afar Triple Junction, indicate that the Red Sea Rift bifurcates south of 17 degrees N latitude with one branch following a continuation of the main Red Sea Rift (similar to 150 degrees Az.) and the other oriented more N-S, traversing the Danakil Depression. These two rift branches account for the full Arabia-Nubia relative motion. The partitioning of extension between rift branches varies approximately linearly along strike; north of similar to 16 degrees N latitude, extension (similar to 15 mm/yr) is all on the main Red Sea Rift while at similar to 13 degrees N, extension (similar to 20 mm/yr) has transferred completely to the Danakil Depression. The Danakil Block separates the two rifts and rotates in a counterclockwise sense with respect to Nubia at a present-day rate of 1.9 +/- 0.1 degrees/Myr around a pole located at 17.0 +/- 0.2 degrees N, 39.7 +/- 0.2 degrees E, accommodating extension along the rifts and developing the roughly triangular geometry of the Danakil Depression. Rotating the Danakil Block back in time to close the Danakil Depression, and assuming that the rotation rate with respect to Nubia has been roughly constant, the present width of the Danakil Depression is consistent with initiation of block rotation at 9.3 +/- 4 Ma, approximately coincident with the initiation of ocean spreading in the Gulf of Aden, and a concomitant similar to 70% increase in the rate of Nubia-Arabia relative motion

    Kinematics of the southern Red Sea-Afar Triple Junction and implications for plate dynamics

    No full text
    GPS measurements adjacent to the southern Red Sea and Afar Triple Junction, indicate that the Red Sea Rift bifurcates south of 17 N latitude with one branch following a continuation of the main Red Sea Rift (∼150 Az.) and the other oriented more N-S, t

    Geodetic constraints on present?day motion of the Arabian Plate: Implications for Red Sea and Gulf of Aden rifting

    No full text
    Five years of continuously recording GPS observations in the Kingdom of Saudi Arabia together with new continuous and survey-mode GPS observations broadly distributed across the Arabian Peninsula provide the basis for substantially improved estimates of present-day motion and internal deformation of the Arabian plate. We derive the following relative, geodetic Euler vectors (latitude (̊N), longitude (̊E), rate (̊/Myr, counterclockwise)) for Arabia-Nubia (31.7 ± 0.2, 24.6 ± 0.3, 0.37 ± 0.01), Arabia-Somalia (22.0 ± 0.5, 26.2 ± 0.5, 0.40 ± 0.01), Arabia-India (18.0 ± 3.8, 87.6 ± 3.3, 0.07 ± 0.01), Arabia-Sinai (35.7 ± 0.8, 17.1 ± 5.0, 0.15 ± 0.04), and Arabia-Eurasia (27.5 ± 0.1, 17.6 ± 0.3, 0.404 ± 0.004). We use these Euler vectors to estimate present-day stability of the Arabian plate, the rate and direction of extension across the Red Sea and Gulf of Aden, and slip rates along the southern Dead Sea fault south of the Lebanon restraining bend (4.5-4.7 ± 0.2 mm/yr, left lateral; 0.8-1.1 ± 0.3 mm/yr extension) and the Owens fracture zone (3.2-2.5 ± 0.5 mm/yr, right lateral, increasing from north to south; 1-2 mm/yr extension). On a broad scale, the Arabian plate has no resolvable internal deformation (weighted root mean square of residual motions for Arabia equals 0.6 mm/yr), although there is marginally significant evidence for N-S shortening in the Palmyride Mountains, Syria at ≤1.5 mm/yr.We show that present day Arabia plate motion with respect to Eurasia is consistent within uncertainties (i.e., ±10%) with plate tectonic estimates since the early Miocene when Arabia separated from Nubia. We estimate the time of Red Sea and Gulf of Aden rifting from present-day Arabia motion, plate tectonic evidence for a 70% increase in Arabia-Nubia relative motion at 13 Ma, and the width of the Red Sea and Gulf of Aden and find that rifting initiated roughly simultaneously (±2.2 Myr) along the strike of the Red Sea from the Gulf of Suez to the Afar Triple Junction, as well as along the West Gulf of Aden at 24 ± 2.2 Ma. Based on the present kinematics, we hypothesize that the negative buoyancy of the subducted ocean lithosphere beneath the Makran and the Zagros fold-thrust belt is the principle driver of Arabia-Eurasia convergence and that resisting forces associated with Arabia-Eurasia continental collision have had little impact on plate motion
    corecore