9 research outputs found

    irrespective of

    Get PDF
    their proliferative and differentiation statu

    SMI of Bcl-2 TW-37 is active across a spectrum of B-cell tumors irrespective of their proliferative and differentiation status

    Get PDF
    The Bcl-2 family of proteins is critical to the life and death of malignant B-lymphocytes. Interfering with their activity using small-molecule inhibitors (SMI) is being explored as a new therapeutic strategy for treating B-cell tumors. We evaluated the efficacy of TW-37, a non-peptidic SMI of Bcl-2 against a range spectrum of human B-cell lines, fresh patient samples and animal xenograft models. Multiple cytochemical and molecular approaches such as acridine orange/ethidium bromide assay for apoptosis, co-immunoprecipitation of complexes and western blot analysis, caspase luminescent activity assay and apoptotic DNA fragmentation assay were used to demonstrate the effect of TW-37 on different B-cell lines, patient derived samples, as well as in animal xenograft models. Nanomolar concentrations of TW-37 were able to induce apoptosis in both fresh samples and established cell lines with IC50 in most cases of 165โ€“320 nM. Apoptosis was independent of proliferative status or pathological classification of B-cell tumor. TW-37 was able to block Bim-Bcl-XL and Bim-Mcl-1 heterodimerization and induced apoptosis via activation of caspases -9, -3, PARP and DNA fragmentation. TW-37 administered to tumor-bearing SCID mice led to significant tumor growth inhibition (T/C), tumor growth delay (T-C) and Log10kill, when used at its maximum tolerated dose (40 mg/kg ร— 3 days) via tail vein. TW-37 failed to induce changes in the Bcl-2 proteins levels suggesting that assessment of baseline Bcl-2 family proteins can be used to predict response to the drug. These findings indicate activity of TW-37 across the spectrum of human B-cell tumors and support the concept of targeting the Bcl-2 system as a therapeutic strategy regardless of the stage of B-cell differentiation

    The biflavonoids, amentoflavone degrades calf thymus DNA in the presence of copper ions

    No full text
    Previous reports from this laboratory have shown that flavonoids including apigenin are capable of inducing oxidative DNA cleavage in the presence of copper ions. In the present report, we have examined the ability of amentoflavone, a biflavonoid which is a dimer of apigenin, to catalyze the degradation of DNA. Amentoflavone was found to degrade calf thymus DNA in the presence of Cu(II) at a rate almost twice that of apigenin. Amentoflavone was also shown to reduce Cu(II) to Cu(I) and to generate hydroxyl radicals in the presence of copper ions. In the presence of Cu(II), the absorption spectrum of amentoflavone undergoes a shift and a quenching effect indicating that the biflavonoid is capable of binding to copper ions. Amentoflavone and apigenin were isolated from Cycas rumphii and Trifolium alexandrinum, respectively. The results are discussed in relation to the putative chemopreventive mechanism of amentoflavone
    corecore