17 research outputs found

    Non-specific lipid-transfer proteins: Allergen structure and function, cross-reactivity, sensitization, and epidemiology

    Get PDF
    Al·lĂšrgia; Epidemiologia; ProteĂŻna de transferĂšncia de lĂ­pidsAlergia; EpidemiologĂ­a; ProteĂ­na de transferencia de lĂ­pidosAllergy; Epidemiology; Lipid transfer proteinBackground Discovered and described 40 years ago, non-specific lipid transfer proteins (nsLTP) are present in many plant species and play an important role protecting plants from stressors such as heat or drought. In the last 20 years, sensitization to nsLTP and consequent reactions to plant foods has become an increasing concern. Aim The aim of this paper is to review the evidence for the structure and function of nsLTP allergens, and cross-reactivity, sensitization, and epidemiology of nsLTP allergy. Materials and Methods A Task Force, supported by the European Academy of Allergy & Clinical Immunology (EAACI), reviewed current evidence and provide a signpost for future research. The search terms for this paper were “Non-specific Lipid Transfer Proteins”, “LTP syndrome”, “Pru p 3”, “plant food allergy”, “pollen-food syndrome”. Results Most nsLTP allergens have a highly conserved structure stabilised by 4-disulphide bridges. Studies on the peach nsLTP, Pru p 3, demonstrate that nsLTPs are very cross-reactive, with the four major IgE epitopes of Pru p 3 being shared by nsLTP from other botanically related fruits. These nsLTP allergens are to varying degrees resistant to heat and digestion, and sensitization may occur through the oral, inhaled or cutaneous routes. In some populations, Pru p 3 is the primary and sole sensitizing allergen, but many are poly-sensitised both to botanically un-related nsLTP in foods, and non-food sources of nsLTP such as Cannabis sativa, Platanus acerifolia, (plane tree), Ambrosia artemisiifolia (ragweed) and Artemisia vulgaris (mugwort). Initially, nsLTP sensitization appeared to be limited to Mediterranean countries, however more recent studies suggest clinically relevant sensitization occurs in North Atlantic regions and also countries in Northern Europe, with nsLTP sensitisation profiles being broadly similar. Discussion These robust allergens have the potential to sensitize and provoke symptoms to a large number of plant foods, including those which are raw, cooked or processed. It is unknown why some sensitized individuals develop clinical symptoms to foods whereas others do not, or indeed what other allergens besides Pru p 3 may be primary sensitising allergens. It is clear that these allergens are also relevant in non-Mediterranean populations and there needs to be more recognition of this. Conclusion Non-specific LTP allergens, present in a wide variety of plant foods and pollens, are structurally robust and so may be present in both raw and cooked foods. More studies are needed to understand routes of sensitization and the world-wide prevalence of clinical symptoms associated with sensitization to these complex allergens

    The global impact of the COVID-19 pandemic on the management and course of chronic urticaria

    Get PDF
    Introduction: The COVID-19 pandemic dramatically disrupts health care around the globe. The impact of the pandemic on chronic urticaria (CU) and its management are largely unknown. Aim: To understand how CU patients are affected by the COVID-19 pandemic; how specialists alter CU patient management; and the course of CU in patients with COVID-19. Materials and Methods: Our cross-sectional, international, questionnaire-based, multicenter UCARE COVID-CU study assessed the impact of the pandemic on patient consultations, remote treatment, changes in medications, and clinical consequences. Results: The COVID-19 pandemic severely impairs CU patient care, with less than 50% of the weekly numbers of patients treated as compared to before the pandemic. Reduced patient referrals and clinic hours were the major reasons. Almost half of responding UCARE physicians were involved in COVID-19 patient care, which negatively impacted on the care of urticaria patients. The rate of face-to-face consultations decreased by 62%, from 90% to less than half, whereas the rate of remote consultations increased by more than 600%, from one in 10 to more than two thirds. Cyclosporine and systemic corticosteroids, but not antihistamines or omalizumab, are used less during the pandemic. CU does not affect the course of COVID-19, but COVID-19 results in CU exacerbation in one of three patients, with higher rates in patients with severe COVID-19. Conclusions: The COVID-19 pandemic brings major changes and challenges for CU patients and their physicians. The long-term consequences of these changes, especially the increased use of remote consultations, require careful evaluation

    Definition, aims, and implementation of GA2LEN/HAEi Angioedema Centers of Reference and Excellence

    Get PDF

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    Non‐specific lipid‐transfer proteins: Allergen structure and function, cross‐reactivity, sensitization, and epidemiology

    No full text
    Abstract Background Discovered and described 40 years ago, non‐specific lipid transfer proteins (nsLTP) are present in many plant species and play an important role protecting plants from stressors such as heat or drought. In the last 20 years, sensitization to nsLTP and consequent reactions to plant foods has become an increasing concern. Aim The aim of this paper is to review the evidence for the structure and function of nsLTP allergens, and cross‐reactivity, sensitization, and epidemiology of nsLTP allergy. Materials and Methods A Task Force, supported by the European Academy of Allergy & Clinical Immunology (EAACI), reviewed current evidence and provide a signpost for future research. The search terms for this paper were “Non‐specific Lipid Transfer Proteins”, “LTP syndrome”, “Pru p 3”, “plant food allergy”, “pollen‐food syndrome”. Results Most nsLTP allergens have a highly conserved structure stabilised by 4‐disulphide bridges. Studies on the peach nsLTP, Pru p 3, demonstrate that nsLTPs are very cross‐reactive, with the four major IgE epitopes of Pru p 3 being shared by nsLTP from other botanically related fruits. These nsLTP allergens are to varying degrees resistant to heat and digestion, and sensitization may occur through the oral, inhaled or cutaneous routes. In some populations, Pru p 3 is the primary and sole sensitizing allergen, but many are poly‐sensitised both to botanically un‐related nsLTP in foods, and non‐food sources of nsLTP such as Cannabis sativa, Platanus acerifolia, (plane tree), Ambrosia artemisiifolia (ragweed) and Artemisia vulgaris (mugwort). Initially, nsLTP sensitization appeared to be limited to Mediterranean countries, however more recent studies suggest clinically relevant sensitization occurs in North Atlantic regions and also countries in Northern Europe, with nsLTP sensitisation profiles being broadly similar. Discussion These robust allergens have the potential to sensitize and provoke symptoms to a large number of plant foods, including those which are raw, cooked or processed. It is unknown why some sensitized individuals develop clinical symptoms to foods whereas others do not, or indeed what other allergens besides Pru p 3 may be primary sensitising allergens. It is clear that these allergens are also relevant in non‐Mediterranean populations and there needs to be more recognition of this. Conclusion Non‐specific LTP allergens, present in a wide variety of plant foods and pollens, are structurally robust and so may be present in both raw and cooked foods. More studies are needed to understand routes of sensitization and the world‐wide prevalence of clinical symptoms associated with sensitization to these complex allergens

    Non‐specific lipid‐transfer proteins: Allergen structure and function, cross‐reactivity, sensitization, and epidemiology

    No full text
    Abstract Background Discovered and described 40 years ago, non‐specific lipid transfer proteins (nsLTP) are present in many plant species and play an important role protecting plants from stressors such as heat or drought. In the last 20 years, sensitization to nsLTP and consequent reactions to plant foods has become an increasing concern. Aim The aim of this paper is to review the evidence for the structure and function of nsLTP allergens, and cross‐reactivity, sensitization, and epidemiology of nsLTP allergy. Materials and Methods A Task Force, supported by the European Academy of Allergy & Clinical Immunology (EAACI), reviewed current evidence and provide a signpost for future research. The search terms for this paper were “Non‐specific Lipid Transfer Proteins”, “LTP syndrome”, “Pru p 3”, “plant food allergy”, “pollen‐food syndrome”. Results Most nsLTP allergens have a highly conserved structure stabilised by 4‐disulphide bridges. Studies on the peach nsLTP, Pru p 3, demonstrate that nsLTPs are very cross‐reactive, with the four major IgE epitopes of Pru p 3 being shared by nsLTP from other botanically related fruits. These nsLTP allergens are to varying degrees resistant to heat and digestion, and sensitization may occur through the oral, inhaled or cutaneous routes. In some populations, Pru p 3 is the primary and sole sensitizing allergen, but many are poly‐sensitised both to botanically un‐related nsLTP in foods, and non‐food sources of nsLTP such as Cannabis sativa, Platanus acerifolia, (plane tree), Ambrosia artemisiifolia (ragweed) and Artemisia vulgaris (mugwort). Initially, nsLTP sensitization appeared to be limited to Mediterranean countries, however more recent studies suggest clinically relevant sensitization occurs in North Atlantic regions and also countries in Northern Europe, with nsLTP sensitisation profiles being broadly similar. Discussion These robust allergens have the potential to sensitize and provoke symptoms to a large number of plant foods, including those which are raw, cooked or processed. It is unknown why some sensitized individuals develop clinical symptoms to foods whereas others do not, or indeed what other allergens besides Pru p 3 may be primary sensitising allergens. It is clear that these allergens are also relevant in non‐Mediterranean populations and there needs to be more recognition of this. Conclusion Non‐specific LTP allergens, present in a wide variety of plant foods and pollens, are structurally robust and so may be present in both raw and cooked foods. More studies are needed to understand routes of sensitization and the world‐wide prevalence of clinical symptoms associated with sensitization to these complex allergens
    corecore