954 research outputs found

    Buoyancy-driven motion of a deformable drop toward a planar wall at low Reynolds number

    Get PDF
    The slow viscous motion of a deformable drop moving normal to a planar wall is studied numerically. In particular, a boundary integral technique employing the Green's function appropriate to a no-slip planar wall is used. Beginning with spherical drop shapes far from the wall, highly deformed and ‘dimpled’ drop configurations are obtained as the planar wall is approached. The initial stages of dimpling and their evolution provide information and insight into the basic assumptions of film-drainage theory

    Demonstration of an electrostatic-shielded cantilever

    Full text link
    The fabrication and performances of cantilevered probes with reduced parasitic capacitance starting from a commercial Si3N4 cantilever chip is presented. Nanomachining and metal deposition induced by focused ion beam techniques were employed in order to modify the original insulating pyramidal tip and insert a conducting metallic tip. Two parallel metallic electrodes deposited on the original cantilever arms are employed for tip biasing and as ground plane in order to minimize the electrostatic force due to the capacitive interaction between cantilever and sample surface. Excitation spectra and force-to-distance characterization are shown with different electrode configurations. Applications of this scheme in electrostatic force microscopy, Kelvin probe microscopy and local anodic oxidation is discussed.Comment: 4 pages and 3 figures. Submitted to Applied Physics Letter

    Automation of three-dimensional structured mesh generation for turbomachinery blade passages

    Get PDF
    Hybrid tools have been developed which greatly reduce the time required to generate three-dimensional structured CFD meshes for turbomachinery blade passages. RAGGS, an existing Rockwell proprietary, general purpose mesh generation and visualization system, provides the starting point and framework for tool development. Utilities which manipulate and interface with RAGGS tools have been developed to (1) facilitate blade geometry inputs from point or CAD representations, (2) automate auxiliary surface creation, and (3) streamline and automate edge, surface, and subsequent volume mesh generation from minimal inputs. The emphasis of this approach has been to maintain all the functionality of the general purpose mesh generator while simultaneously eliminating the bulk of the repetitive and tediuos manual steps in the mesh generation process. Using this approach, mesh generation cycle times have been reduced from the order of days down to the order of hours

    A Commitment to Open Source in Neuroscience

    Get PDF
    Modern neuroscience increasingly relies on custom-developed software, but much of this is not being made available to the wider community. A group of researchers are pledging to make code they produce for data analysis and modeling open source, and are actively encouraging their colleagues to follow suit

    Pulmonary tuberculosis followed by sarcoidosis in an HIV-infected patient: a case report and a simplified diagnostic flowchart for diagnosis and treatment of sarcoidosis

    Get PDF
    The diagnosis of sarcoidosis in a patient living with HIV infection is an uncommon event and a challenge for clinicians. Clinical manifestations are variable and fluctuating depending to adherence to ARV therapy and to the level of CD4 count. We analyze here one chronic case in which sarcoidosis appeared clinically two years after pulmonary tuberculosis. The course of the disease was influenced and prolonged by frequent interruptions of antiretroviral therapy. Moreover the diagnosis and the decision to treat have been delayed by the need of exclusion of other pathologies, principally tuberculosis reactivation/reinfection, other mycobacterial diseases, hematologic malignancies. We propose a simplified flowchart for diagnosis and follow up of sarcoidosis, which may also be applied to patients with HIV infection. Diagnosis of latent tuberculosis infection (LTBI) may be difficult in these patients, because the immunological paradox of sarcoidosis. For this reason, following exclusion of active tuberculosis, we advise to submit all sarcoidosis patients to IPT (isoniazid preventive therapy), when immunosuppressive therapy is started

    High incidence of classic Kaposi's sarcoma in Mantua, Po Valley, Northern Italy (1989–1998)

    Get PDF
    The incidence of classic Kaposi's sarcoma was estimated in the province of Mantua, Po Valley, Northern Italy, yielding age-standardized rates of 2.5/100 000 men and 0.7/100 000 women (1989–98). Elevated rates in the rural zone of Viadana/Sabbioneta (5.0/100 000 men and 2.8/100 000 women) are among the highest so far reported for Italian communities. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Metrics for comparing neuronal tree shapes based on persistent homology

    Get PDF
    As more and more neuroanatomical data are made available through efforts such as NeuroMorpho.Org and FlyCircuit.org, the need to develop computational tools to facilitate automatic knowledge discovery from such large datasets becomes more urgent. One fundamental question is how best to compare neuron structures, for instance to organize and classify large collection of neurons. We aim to develop a flexible yet powerful framework to support comparison and classification of large collection of neuron structures efficiently. Specifically we propose to use a topological persistence-based feature vectorization framework. Existing methods to vectorize a neuron (i.e, convert a neuron to a feature vector so as to support efficient comparison and/or searching) typically rely on statistics or summaries of morphometric information, such as the average or maximum local torque angle or partition asymmetry. These simple summaries have limited power in encoding global tree structures. Based on the concept of topological persistence recently developed in the field of computational topology, we vectorize each neuron structure into a simple yet informative summary. In particular, each type of information of interest can be represented as a descriptor function defined on the neuron tree, which is then mapped to a simple persistence-signature. Our framework can encode both local and global tree structure, as well as other information of interest (electrophysiological or dynamical measures), by considering multiple descriptor functions on the neuron. The resulting persistence-based signature is potentially more informative than simple statistical summaries (such as average/mean/max) of morphometric quantities-Indeed, we show that using a certain descriptor function will give a persistence-based signature containing strictly more information than the classical Sholl analysis. At the same time, our framework retains the efficiency associated with treating neurons as points in a simple Euclidean feature space, which would be important for constructing efficient searching or indexing structures over them. We present preliminary experimental results to demonstrate the effectiveness of our persistence-based neuronal feature vectorization framework

    Criteria for evaluation of grid generation systems

    Get PDF
    Many CFD grid generation systems are in use nationally, but few comparative studies have been performed to quantify their relative merits. A study was undertaken to systematically evaluate and select the best CFD grid generation codes available. Detailed evaluation criteria were established as the basis for the evaluation conducted. Descriptions of thirty-four separate criteria, grouped into eight general categories are provided. Benchmark test cases, developed to test basic features of selected codes, are described in detail. Scoring guidelines were generated to establish standards for measuring code capabilities, ensuring uniformity of ratings, and minimizing personal bias among the three code evaluators. Ten candidate codes were identified from government, industry, universities, and commercial software companies. A three phase evaluation was conducted. In Phase 1, ten codes identified were screened through conversations with code authors and other industry experts. Seven codes were carried forward into a Phase 2 evaluation in which all codes were scored according to the predefined criteria. Two codes emerged as being significantly better than the others: RAGGS and GRIDGEN. Finally, these two codes were carried forward into a Phase 3 evaluation in which complex 3-D multizone grids were generated to verify capability

    Upper Limit on the Magnetic Dipole Contribution to the 5p-8p Transition in Rb by Use of Ultracold Atom Spectroscopy

    Full text link
    We report on hyperfine-resolved spectroscopic measurements of the electric-dipole forbidden 5p3/2→8p1/2p_{3/2} \to 8p_{1/2} transition in a sample of ultracold 87^{87}Rb atoms. The hyperfine selection rules enable the weak magnetic-dipole (M1) contribution to the transition strength to be distinguished from the much stronger electric-quadrupole (E2) contribution. An upper limit on the M1 transition strength is determined that is about 50 times smaller than an earlier experimental determination. We also calculate the expected value of the M1 matrix element and find that it is less than the upper limit extracted from the experiment.Comment: 7 pages, 4 figures, 3 table
    • …
    corecore