5,581 research outputs found

    Scattering by randomly oriented ellipsoids: Application to aerosol and cloud problems

    Get PDF
    A program was developed for computing the scattering and absorption by arbitrarily oriented and randomly oriented prolate and oblate spheroids. This permits examination of the effect of particle shape for cases ranging from needles through spheres to platelets. Applications of this capability to aerosol and cloud problems are discussed. Initial results suggest that the effect of nonspherical particle shape on transfer of radiation through aerosol layers and cirrus clouds, as required for many climate studies, can be readily accounted for by defining an appropriate effective spherical particle radius

    Constraints on Scalar Phantoms

    Full text link
    We update the constraints on the minimal model of dark matter, where a stable real scalar field is added to the standard model Lagrangian with a renormalizable coupling to the Higgs field. Once we fix the dark matter abundance, there are only two relevant model parameters, the mass of the scalar field and that of the Higgs boson. The recent data from the CDMS II experiment have excluded a parameter region where the scalar field is light such as less than about 50 GeV. In a large parameter region, the consistency of the model can be tested by the combination of future direct detection experiments and the LHC experiments.Comment: 7 pages, 1 figur

    Gamma Ray Bursts: recent results and connections to very high energy Cosmic Rays and Neutrinos

    Full text link
    Gamma-ray bursts are the most concentrated explosions in the Universe. They have been detected electromagnetically at energies up to tens of GeV, and it is suspected that they could be active at least up to TeV energies. It is also speculated that they could emit cosmic rays and neutrinos at energies reaching up to the 1018102010^{18}-10^{20} eV range. Here we review the recent developments in the photon phenomenology in the light of \swift and \fermi satellite observations, as well as recent IceCube upper limits on their neutrino luminosity. We discuss some of the theoretical models developed to explain these observations and their possible contribution to a very high energy cosmic ray and neutrino background.Comment: 12 pages, 7 figures. Text of a plenary lecture at the PASCOS 12 conference, Merida, Yucatan, Mexico, June 2012; to appear in J.Phys. (Conf. Series

    Quantum theory as a relevant framework for the statement of probabilistic and many-valued logic

    Full text link
    Based on ideas of quantum theory of open systems we propose the consistent approach to the formulation of logic of plausible propositions. To this end we associate with every plausible proposition diagonal matrix of its likelihood and examine it as density matrix of relevant quantum system. We are showing that all logical connectives between plausible propositions can be represented as special positive valued transformations of these matrices. We demonstrate also the above transformations can be realized in relevant composite quantum systems by quantum engineering methods. The approach proposed allows one not only to reproduce and generalize results of well-known logical systems (Boolean, Lukasiewicz and so on) but also to classify and analyze from unified point of view various actual problems in psychophysics and social sciences.Comment: 7 page

    Stringy effect of the holographic correspondence for Dp-brane backgrounds

    Full text link
    Based on the holographic conjecture for superstrings on Dp-brane backgrounds and the dual (p+1)-dimensional gauge theory (0p40\le p\le 4) given in hep-th/0308024 and hep-th/0405203, we continue the study of superstring amplitudes including string higher modes (n0n\ne 0). We give a prediction to the two-point functions of operators with large R-charge J. The effect of stringy modes do not appear as the form of anomalous dimensions except for p=3. Instead, it gives non-trivial correction to the two-point functions for supergravity modes. For p=4, the scalar two-point functions for any n behave like free fields of the effective dimension d_{eff}=6 in the infra-red limit.Comment: 23 pages, typos correcte

    Time Does Tell: Self-Supervised <i>Time-Tuning</i> of Dense Image Representations

    Get PDF
    Spatially dense self-supervised learning is a rapidly growing problem domain with promising applications for unsupervised segmentation and pretraining for dense downstream tasks. Despite the abundance of temporal data in the form of videos, this information-rich source has been largely overlooked. Our paper aims to address this gap by proposing a novel approach that incorporates temporal consistency in dense self-supervised learning. While methods designed solely for images face difficulties in achieving even the same performance on videos, our method improves not only the representation quality for videos – but also images. Our approach, which we call time-tuning, starts from image-pretrained models and fine-tunes them with a novel self-supervised temporal-alignment clustering loss on unlabeled videos. This effectively facilitates the transfer of high-level information from videos to image representations. Time-tuning improves the state-of-the-art by 8-10% for unsupervised semantic segmentation on videos and matches it for images. We believe this method paves the way for further self-supervised scaling by leveraging the abundant availability of videos. The implementation can be found here : https://github.com/SMSD75/Timetunin

    State entropy and differentiation phenomenon

    Get PDF
    In the formalism of quantum theory, a state of a system is represented by a density operator . Mathematically, a density operator can be decomposed into a weighted sum of (projection) operators representing an ensemble of pure states (a state distribution), but such decomposition is not unique. Various pure states distributions are mathematically described by the same density operator. These distributions are categorized into classical ones obtained from the Schatten decomposition and other, non-classical, ones. In this paper, we define the quantity called the state entropy . It can be considered as a generalization of the von Neumann entropy evaluating the diversity of states constituting a distribution. Further, we apply the state entropy to the analysis of non-classical states created at the intermediate stages in the process of quantum measurement . To do this, we employ the model of differentiation , where a system experiences step by step state transitions under the influence of environmental factors. This approach can be used for modeling various natural and mental phenomena: cell’s differentiation, evolution of biological populations, and decision makin

    Large-N reduction for N=2 quiver Chern-Simons theories on S^3 and localization in matrix models

    Full text link
    We study reduced matrix models obtained by the dimensional reduction of N=2 quiver Chern-Simons theories on S^3 to zero dimension and show that if a reduced model is expanded around a particular multiple fuzzy sphere background, it becomes equivalent to the original theory on S^3 in the large-N limit. This is regarded as a novel large-N reduction on a curved space S^3. We perform the localization method to the reduced model and compute the free energy and the vacuum expectation value of a BPS Wilson loop operator. In the large-N limit, we find an exact agreement between these results and those in the original theory on S^3.Comment: 46 pages, 11 figures; minor modification
    corecore