89 research outputs found

    Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition

    Get PDF
    © The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Genome Biology 11 (2010): R119, doi:10.1186/gb-2010-11-12-r119.We characterize and extend a highly efficient method for constructing shotgun fragment libraries in which transposase catalyzes in vitro DNA fragmentation and adaptor incorporation simultaneously. We apply this method to sequencing a human genome and find that coverage biases are comparable to those of conventional protocols. We also extend its capabilities by developing protocols for sub-nanogram library construction, exome capture from 50 ng of input DNA, PCR-free and colony PCR library construction, and 96-plex sample indexing.This work was supported in part by grants from the National Institutes of Health/National Heart Lung and Blood Institute (R01 HL094976 to JS), the National Institutes of Health/National Human Genome Research Institute (R21 HG004749 to JS), the National Institutes of Health/National Institute of Allergy and Infectious Disease Northwest Regional Center of Excellence for Biodefense and Emerging Infectious Diseases at the University of Washington (3U54AI05714), the Ministry of Science and Technology of China, 863 program (2006AA02A301), and an NSF Graduate Research Fellowship (to JOK)

    Comprehensive comparison of three commercial human whole-exome capture platforms

    Get PDF
    BackgroundExome sequencing, which allows the global analysis of protein coding sequences in the human genome, has become an effective and affordable approach to detecting causative genetic mutations in diseases. Currently, there are several commercial human exome capture platforms; however, the relative performances of these have not been characterized sufficiently to know which is best for a particular study.ResultsWe comprehensively compared three platforms: NimbleGen's Sequence Capture Array and SeqCap EZ, and Agilent's SureSelect. We assessed their performance in a variety of ways, including number of genes covered and capture efficacy. Differences that may impact on the choice of platform were that Agilent SureSelect covered approximately 1,100 more genes, while NimbleGen provided better flanking sequence capture. Although all three platforms achieved similar capture specificity of targeted regions, the NimbleGen platforms showed better uniformity of coverage and greater genotype sensitivity at 30- to 100-fold sequencing depth. All three platforms showed similar power in exome SNP calling, including medically relevant SNPs. Compared with genotyping and whole-genome sequencing data, the three platforms achieved a similar accuracy of genotype assignment and SNP detection. Importantly, all three platforms showed similar levels of reproducibility, GC bias and reference allele bias.ConclusionsWe demonstrate key differences between the three platforms, particularly advantages of solutions over array capture and the importance of a large gene target set

    Strong anthropogenic control of secondary organic aerosol formation from isoprene in Beijing

    Get PDF
    Isoprene-derived secondary organic aerosol (iSOA) is a significant contributor to organic carbon (OC) in some forested regions, such as tropical rainforests and the Southeastern US. However, its contribution to organic aerosol in urban areas that have high levels of anthropogenic pollutants is poorly understood. In this study, we examined the formation of anthropogenically influenced iSOA during summer in Beijing, China. Local isoprene emissions and high levels of anthropogenic pollutants, in particular NOx and particulate SO2-4 , led to the formation of iSOA under both high- A nd low-NO oxidation conditions, with significant heterogeneous transformations of isoprene-derived oxidation products to particulate organosulfates (OSs) and nitrooxyorganosulfates (NOSs). Ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry was combined with a rapid automated data processing technique to quantify 31 proposed iSOA tracers in offline PM2.5 filter extracts. The co-elution of the inorganic ions in the extracts caused matrix effects that impacted two authentic standards differently. The average concentration of iSOA OSs and NOSs was 82.5 ngm-3, which was around 3 times higher than the observed concentrations of their oxygenated precursors (2-methyltetrols and 2-methylglyceric acid). OS formation was dependant on both photochemistry and the sulfate available for reactive uptake, as shown by a strong correlation with the product of ozone (O3) and particulate sulfate (SO2-4). A greater proportion of high-NO OS products were observed in Beijing compared with previous studies in less polluted environments. The iSOA-derived OSs and NOSs represented 0.62% of the oxidized organic aerosol measured by aerosol mass spectrometry on average, but this increased to ∼ 3% on certain days. These results indicate for the first time that iSOA formation in urban Beijing is strongly controlled by anthropogenic emissions and results in extensive conversion to OS products from heterogenous reactions

    From hyper- to hypoinsulinemia and diabetes: effect of KCNH6 on insulin secretion

    Get PDF
    Glucose-stimulated insulin secretion from islet β cells is mediated by K channels. However, the role of non-K K channels in insulin secretion is largely unknown. Here, we show that a non-K K channel, KCNH6, plays a key role in insulin secretion and glucose hemostasis in humans and mice. KCNH6 p.P235L heterozygous mutation co-separated with diabetes in a four-generation pedigree. Kcnh6 knockout (KO) or Kcnh6 p.P235L knockin (KI) mice had a phenotype characterized by changing from hypoglycemia with hyperinsulinemia to hyperglycemia with insulin deficiency. Islets from the young KO mice had increased intracellular calcium concentration and increased insulin secretion. However, islets from the adult KO mice not only had increased intracellular calcium levels but also had remarkable ER stress and apoptosis, associated with loss of β cell mass and decreased insulin secretion. Therefore, dysfunction of KCNH6 causes overstimulation of insulin secretion in the short term and β cell failure in the long term.Yang et al. show that KCNH6 plays a key role in insulin secretion and glucose hemostasis in humans and mice. Dysfunction of KCNH6 results in a hyperinsulinemia phenotype in the short term and hypoinsulinemia and diabetes in the long term

    Impact of HO2 aerosol uptake on radical levels and O3 production during summertime in Beijing

    Get PDF
    The impact of heterogeneous uptake of HO2 on aerosol surfaces on radical concentrations and the O3 production regime in Beijing in summertime was investigated. The uptake coefficient of HO2 onto aerosol surfaces, γHO2 , was calculated for the AIRPRO campaign in Beijing, in summer 2017, as a function of measured aerosol soluble copper concentration, [Cu2+]eff, aerosol liquid water content, [ALWC], and particulate matter concentration, [PM]. An average γHO2 across the entire campaign of 0.070 ± 0.035 was calculated, with values ranging from 0.002 to 0.15, and found to be significantly lower than the value of γHO2 = 0.2, commonly used in modelling studies. Using the calculated γHO2 values for the summer AIRPRO campaign, OH, HO2 and RO2 radical concentrations were modelled using a box model incorporating the Master Chemical Mechanism (v3.3.1), with and without the addition of γHO2 , and compared to the measured radical concentrations. The rate of destruction analysis showed the dominant HO2 loss pathway to be HO2 + NO for all NO concentrations across the summer Beijing campaign, with HO2 uptake contributing < 0.3 % to the total loss of HO2 on average. This result for Beijing summertime would suggest that under most conditions encountered, HO2 uptake onto aerosol surfaces is not important to consider when investigating increasing O3 production with decreasing [PM] across the North China Plain. At low [NO], however, i.e. < 0.1 ppb, which was often encountered in the afternoons, up to 29 % of modelled HO2 loss was due to HO2 uptake on aerosols when calculated γHO2 was included, even with the much lower γHO2 values compared to γHO2 = 0.2, a result which agrees with the aerosol-inhibited O3 regime recently proposed by Ivatt et al. (2022). As such it can be concluded that in cleaner environments, away from polluted urban centres where HO2 loss chemistry is not dominated by NO but where aerosol surface area is high still, changes in PM concentration and hence aerosol surface area could still have a significant effect on both overall HO2 concentration and the O3 production regime. Using modelled radical concentrations, the absolute O3 sensitivity to NOx and volatile organic compounds (VOCs) showed that, on average across the summer AIRPRO campaign, the O3 production regime remained VOC-limited, with the exception of a few days in the afternoon when the NO mixing ratio dropped low enough for the O3 regime to shift towards being NOx -limited. The O3 sensitivity to VOCs, the dominant regime during the summer AIRPRO campaign, was observed to decrease and shift towards a NOx -sensitive regime both when NO mixing ratio decreased and with the addition of aerosol uptake. This suggests that if [NOx ] continues to decrease in the future, ozone reduction policies focussing solely on NOx reductions may not be as efficient as expected if [PM] and, hence, HO2 uptake to aerosol surfaces continue to decrease. The addition of aerosol uptake into the model, for both the γHO2 calculated from measured data and when using a fixed value of γHO2 = 0.2, did not have a significant effect on the overall O3 production regime across the campaign. While not important for this campaign, aerosol uptake could be important for areas of lower NO concentration that are already in a NOx -sensitive regime
    corecore