85 research outputs found

    Phenotypic and Functional Characterization of B-lineage cells Associated With Relapse and Response to B-cell Depletion Therapy for Rheumatoid Arthritis

    Get PDF
    Background: Clinical response to therapeutic B-cell depletion by anti-CD20 antibody in rheumatoid arthritis (RA) is not associated with robust depletion of disease specific anti-citrullinated protein antibodies (ACPA). This suggests pathogenesis mediated predominantly by short-lived antibody secreting cells or an antibody independent role of B-cells or both in RA. The persistence of ACPA post B-cell depletion is consistent with secretion from long-lived plasma cells (PC) and could be linked to non-response to B-cell depletion. The aim of this thesis was to delineate populations of B-cells and plasma cells linked to RA disease activity. Results: Autoreactive citrullinated protein-specific B-cells were detected using ELISA from supernatants of B cell culture but not by flow cytometry or ELISpot. RA patients relapsing following B-cell depletion showed an increased proportion of a memory B-cell subset in the peripheral blood. The in vitro stage of B-cell differentiation closest to this relapse associated subset secreted multiple proinflammatory mediators. A novel mode of contact-dependent B-NK cell interaction was noted, likely to be due to EBV latency in B-cells or a novel mode of B-cell regulation by NK cells. CD19Neg PCs had a longer recovery time following depletion and had a longer life span in an in vitro PC differentiation model system but were generated early, which suggests that CD19 negativity is a marker for potential to be long-lived rather than PC age. Conclusions: Memory B-cell subset distribution is skewed during clinical relapse in RA which reflects on-going B-cell activity/differentiation generating inflammatory mediators or pathogenic short-lived antibody secreting cells which explains response to B-cell depletion or anti-TNF therapy. In those patients where B-cell depletion does not achieve clinical response, CD19Neg long-lived PCs may have a pathogenic role. Agents targeting certain stages of B-cell differentiation or long-lived PCs can be therapeutic options in carefully selected patients

    Early emergence of CD19-negative human antibody secreting cells at the plasmablast to plasma cell transition

    Get PDF
    Long-lived human plasma cells (PCs) play central roles in immunity and autoimmunity and are enriched amongst the subpopulation of CD19-negative human PCs. However, whether human CD19-negative PCs are necessarily ″aged″ cells that have gradually lost CD19 expression is not known. Assessing peripheral blood samples at steady state and during the acute response to influenza vaccination in healthy donors we identify the presence of phenotypic CD19-negative plasmablasts, the proliferative precursor state to mature PCs, and demonstrate by ELISpot that these are antibody-secreting cells (ASCs). During the acute response to influenza vaccination CD19-positive, CD19-low and CD19-negative ASCs secrete vaccine-specific antibody and show linked IGHV repertoires. To address precursor/product relationships we employ in vitro models which mimic both T-dependent and T-independent differentiation finding that the CD19-negative state can be established at the plasmablast to PC transition, that CD19-negative PCs increase as a percentage of surviving PCs in vitro, and that CD19-negative and CD19-positive PCs can be maintained independently. These data provide proof-of-principle for the view that newly generated ASCs can acquire a mature PC phenotype accompanied by loss of CD19 expression at an early stage of differentiation and that ″aging″ is not an obligate requirement for a CD19-negative state to be established

    Expanding clinical phenotype and novel insights into the pathogenesis of ICOS deficiency

    Get PDF
    Background: Inducible T cell co-stimulator (ICOS) deficiency has been categorized as a combined immunodeficiency often complicated by enteropathies, autoimmunity, lymphoproliferation, and malignancy. We report seven new patients and four novel ICOS mutations resulting in a common variable immunodeficiency (CVID)–like phenotype and show that dysregulated IL-12 release, reduced cytotoxic T lymphocyte–associated protein 4 (CTLA4) expression, and skewing towards a Th1-dominant phenotype are all associated with inflammatory complications in this condition. Methods: A combination of whole exome and Sanger sequencing was used to identify novel mutations. Standard clinical and immunological evaluation was performed. FACS and ELISA-based assays were used to study cytokine responses and ICOS/ICOSL/CTLA4 expression following stimulation of whole blood and PBMCs with multiple TLR ligands, anti-CD3, and PHA. Results: Four novel ICOS mutations included homozygous c.323_332del, homozygous c.451C>G, and compound heterozygous c.58+1G>A/c.356T>C. The predominant clinical phenotype was that of antibody deficiency associated with inflammatory complications in 4/7 patients. Six out of seven patients were treated with immunoglobulin replacement and one patient died from salmonella sepsis. All patients who were tested showed reduced IL-10 and IL-17 cytokine responses, normal IL-1β, IL6, and TNF release following LPS stimulation and highly elevated IL-12 production in response to combined LPS/IFNγ stimulation. This was associated with skewing of CD4+ T cells towards Th1 phenotype and increased expression of ICOSL on monocytes. Lastly, reduced CTLA4 expression was found in 2 patients. One patient treated with ustekinumab for pancytopenia due to granulomatous bone marrow infiltration failed to respond to this targeted therapy. Conclusions: ICOS deficiency is associated with defective T cell activation, with simultaneously enhanced stimulation of monocytes. The latter is likely to result from a lack of ICOS/ICOSL interaction which might be necessary to provide negative feedback which limits monocytes activation

    Inherited CD19 Deficiency Does Not Impair Plasma Cell Formation or Response to CXCL12

    Get PDF
    Background The human CD19 antigen is expressed throughout B cell ontogeny with the exception of neoplastic plasma cells and a subset of normal plasma cells. CD19 plays a role in propagating signals from the B cell receptor and other receptors such as CXCR4 in mature B cells. Studies of CD19-deficient patients have confirmed its function during the initial stages of B cell activation and the production of memory B cells; however, its role in the later stages of B cell differentiation is unclear. Objective Using B cells from a newly identified CD19-deficient individual, we investigated the role of CD19 in the generation and function of plasma cells using an in vitro differentiation model. Methods Flow cytometry and long-read nanopore sequencing using locus-specific long-range amplification products were used to screen a patient with suspected primary immunodeficiency. Purified B cells from the patient and healthy controls were activated with CD40L, IL-21, IL-2, and anti-Ig, then transferred to different cytokine conditions to induce plasma cell differentiation. Subsequently, the cells were stimulated with CXCL12 to induce signalling through CXCR4. Phosphorylation of key downstream proteins including ERK and AKT was assessed by Western blotting. RNA-seq was also performed on in vitro differentiating cells. Results Long-read nanopore sequencing identified the homozygous pathogenic mutation c.622del (p.Ser208Profs*19) which was corroborated by the lack of CD19 cell surface staining. CD19-deficient B cells that are predominantly naïve generate phenotypically normal plasma cells with expected patterns of differentiation-associated genes and normal levels of CXCR4. Differentiated CD19-deficient cells were capable of responding to CXCL12; however, plasma cells derived from naïve B cells, both CD19-deficient and sufficient, had relatively diminished signaling compared to those generated from total B cells. Additionally, CD19 ligation on normal plasma cells results in AKT phosphorylation. Conclusion CD19 is not required for generation of antibody-secreting cells or the responses of these populations to CXCL12, but may alter the response other ligands that require CD19 potentially affecting localization, proliferation, or survival. The observed hypogammaglobulinemia in CD19-deficient individuals is therefore likely attributable to the lack of memory B cells

    Clinical and immunologic phenotype associated with activated phosphoinositide 3-kinase δ syndrome 2: A cohort study

    Get PDF
    Background Activated phosphoinositide 3-kinase δ syndrome (APDS) 2 (p110δ-activating mutations causing senescent T cells, lymphadenopathy, and immunodeficiency [PASLI]–R1), a recently described primary immunodeficiency, results from autosomal dominant mutations in PIK3R1, the gene encoding the regulatory subunit (p85α, p55α, and p50α) of class IA phosphoinositide 3-kinases. Objectives We sought to review the clinical, immunologic, and histopathologic phenotypes of APDS2 in a genetically defined international patient cohort. Methods The medical and biological records of 36 patients with genetically diagnosed APDS2 were collected and reviewed. Results Mutations within splice acceptor and donor sites of exon 11 of the PIK3R1 gene lead to APDS2. Recurrent upper respiratory tract infections (100%), pneumonitis (71%), and chronic lymphoproliferation (89%, including adenopathy [75%], splenomegaly [43%], and upper respiratory tract lymphoid hyperplasia [48%]) were the most common features. Growth retardation was frequently noticed (45%). Other complications were mild neurodevelopmental delay (31%); malignant diseases (28%), most of them being B-cell lymphomas; autoimmunity (17%); bronchiectasis (18%); and chronic diarrhea (24%). Decreased serum IgA and IgG levels (87%), increased IgM levels (58%), B-cell lymphopenia (88%) associated with an increased frequency of transitional B cells (93%), and decreased numbers of naive CD4 and naive CD8 cells but increased numbers of CD8 effector/memory T cells were predominant immunologic features. The majority of patients (89%) received immunoglobulin replacement; 3 patients were treated with rituximab, and 6 were treated with rapamycin initiated after diagnosis of APDS2. Five patients died from APDS2-related complications. Conclusion APDS2 is a combined immunodeficiency with a variable clinical phenotype. Complications are frequent, such as severe bacterial and viral infections, lymphoproliferation, and lymphoma similar to APDS1/PASLI-CD. Immunoglobulin replacement therapy, rapamycin, and, likely in the near future, selective phosphoinositide 3-kinase δ inhibitors are possible treatment options

    Repeat cycles of rituximab on clinical relapse in ANCA-associated vasculitis: identifying B cell biomarkers for relapse to guide retreatment decisions

    Get PDF
    OBJECTIVE: To assess clinical and B cell biomarkers to predict relapse after rituximab in antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) using retreatment on clinical relapse strategy. METHODS: 35 patients with AAV received treatment with 2×1000 mg rituximab, repeated on clinical relapse (up to 5 cycles). Disease activity was assessed by Birmingham Vasculitis Activity Score (BVAS) and peripheral B cell subsets using highly sensitive flow cytometry (HSFC) as previously described; both performed at baseline and every 3 months. RESULTS: Response rates were high: >83%, with median time-to-relapse of 82 weeks for cycle 1 (C1) and >54 weeks for all cycles. Prior to rituximab, AAV was characterised by naïve B-lymphopenia compared to healthy controls. This dysregulation was more marked in patients with raised C-reactive protein (CRP) (p<0.05). In C1, no clinical feature predicted relapse. However, repopulation of naïve B cell at 6 months was associated with a reduced risk of relapse (HR: 0.326, 95% 0.114 to 0.930, p=0.036). Relapse rates at 12 and 18 months were 0% and 14% with naïve repopulation at 6 months, and 31% and 54% without naïve repopulation. CONCLUSIONS: Responses to B cell depletion therapy are long-lasting and relapse post-treatment may be predicted by absence of naïve B cell repopulation at 6 months. Naïve B-lymphopenia may be a biomarker of disease activity in AAV

    Outcomes following SARS-CoV-2 infection in patients with primary and secondary immunodeficiency in the UK

    Get PDF
    In March 2020, the United Kingdom Primary Immunodeficiency Network (UKPIN) established a registry of cases to collate the outcomes of individuals with PID and SID following SARS-CoV-2 infection and treatment. A total of 310 cases of SARS-CoV-2 infection in individuals with PID or SID have now been reported in the UK. The overall mortality within the cohort was 17.7% (n = 55/310). Individuals with CVID demonstrated an infection fatality rate (IFR) of 18.3% (n = 17/93), individuals with PID receiving IgRT had an IFR of 16.3% (n = 26/159) and individuals with SID, an IFR of 27.2% (n = 25/92). Individuals with PID and SID had higher inpatient mortality and died at a younger age than the general population. Increasing age, low pre-SARS-CoV-2 infection lymphocyte count and the presence of common co-morbidities increased the risk of mortality in PID. Access to specific COVID-19 treatments in this cohort was limited: only 22.9% (n = 33/144) of patients admitted to the hospital received dexamethasone, remdesivir, an anti-SARS-CoV-2 antibody-based therapeutic (e.g. REGN-COV2 or convalescent plasma) or tocilizumab as a monotherapy or in combination. Dexamethasone, remdesivir, and anti-SARS-CoV-2 antibody-based therapeutics appeared efficacious in PID and SID. Compared to the general population, individuals with PID or SID are at high risk of mortality following SARS-CoV-2 infection. Increasing age, low baseline lymphocyte count, and the presence of co-morbidities are additional risk factors for poor outcome in this cohort

    Bialellic Mutations in Tetratricopeptide Repeat Domain 7A (TTC7A) Cause Common Variable Immunodeficiency-Like Phenotype with Enteropathy

    Get PDF
    TTC7A deficiency typically causes severe gastrointestinal manifestations such as multiple intestinal atresia or early-onset inflammatory bowel disease. In some cases, this is associated with severe combined immunodeficiency. Partial loss-of-function mutations appear to be associated with a milder phenotype resulting in common variable immunodeficiency-like condition with enteropathy

    MDA5-autoimmunity and interstitial pneumonitis contemporaneous with the COVID-19 pandemic (MIP-C)

    Get PDF
    Background Anti-MDA5 (Melanoma differentiation-associated protein-5) positive dermatomyositis (MDA5+-DM) is characterised by rapidly progressive interstitial lung disease (ILD) and high mortality. MDA5 is an RNA sensor and a key pattern recognition receptor for the SARS-CoV-2 virus. Methods This is a retrospective observational study of a surge in MDA5 autoimmunity, as determined using a 15 muscle-specific autoantibodies (MSAs) panel, between Janurary 2018 and December 2022 in Yorkshire, UK. MDA5-positivity was correlated with clinical features and outcome, and regional SARS-CoV-2 positivity and vaccination rates. Gene expression patterns in COVID-19 were compared with autoimmune lung disease and idiopathic pulmonary fibrosis (IPF) to gain clues into the genesis of the observed MDA5+-DM outbreak. Findings Sixty new anti-MDA5+, but not other MSAs surged between 2020 and 2022, increasing from 0.4% in 2019 to 2.1% (2020), 4.8% (2021) and 1.7% (2022). Few (8/60) had a prior history of confirmed COVID-19, peak rates overlapped with regional SARS-COV-2 community positivity rates in 2021, and 58% (35/60) had received anti-SARS-CoV-2 vaccines. 25/60 cases developed ILD which rapidly progression with death in 8 cases. Among the 35/60 non-ILD cases, 14 had myositis, 17 Raynaud phenomena and 10 had dermatomyositis spectrum rashes. Transcriptomic studies showed strong IFIH1 (gene encoding for MDA5) induction in COVID-19 and autoimmune-ILD, but not IPF, and IFIH1 strongly correlated with an IL-15-centric type-1 interferon response and an activated CD8+ T cell signature that is an immunologic hallmark of progressive ILD in the setting of systemic autoimmune rheumatic diseases. The IFIH1 rs1990760TT variant blunted such response. Interpretation A distinct pattern of MDA5-autoimmunity cases surged contemporaneously with circulation of the SARS-COV-2 virus during COVID-19. Bioinformatic insights suggest a shared immunopathology with known autoimmune lung disease mechanisms. Funding This work was supported in part by the National Institute for Health Research (NIHR) Leeds Biomedical Research Centre (BRC), and in part by the National Institutes of Health (NIH) grant R01-AI155696 and pilot awards from the UC Office of the President (UCOP)-RGPO (R00RG2628, R00RG2642 and R01RG3780) to P.G. S.S was supported in part by R01-AI141630 (to P.G) and in part through funds from the American Association of Immunologists (AAI) Intersect Fellowship Program for Computational Scientists and Immunologists
    • …
    corecore