128 research outputs found
Modeling the impact of white-plague coral disease in climate change scenarios
Coral reefs are in global decline, with coral diseases increasing both in prevalence and in space, a situation that is expected only to worsen as future thermal stressors increase. Through intense surveillance, we have collected a unique and highly resolved dataset from the coral reef of Eilat (Israel, Red Sea), that documents the spatiotemporal dynamics of a White Plague Disease (WPD) outbreak over the course of a full season. Based on modern statistical methodologies, we develop a novel spatial epidemiological model that uses a maximum-likelihood procedure to fit the data and assess the transmission pattern of WPD. We link the model to sea surface temperature (SST) and test the possible effect of increasing temperatures on disease dynamics. Our results reveal that the likelihood of a susceptible coral to become infected is governed both by SST and by its spatial location relative to nearby infected corals. The model shows that the magnitude of WPD epidemics strongly depends on demographic circumstances; under one extreme, when recruitment is free-space regulated and coral density remains relatively constant, even an increase of only 0.5 degrees C in SST can cause epidemics to double in magnitude. In reality, however, the spatial nature of transmission can effectively protect the community, restricting the magnitude of annual epidemics. This is because the probability of susceptible corals to become infected is negatively associated with coral density. Based on our findings, we expect that infectious diseases having a significant spatial component, such as Red-Sea WPD, will never lead to a complete destruction of the coral community under increased thermal stress
Upper bounds for number of removed edges in the Erased Configuration Model
Models for generating simple graphs are important in the study of real-world
complex networks. A well established example of such a model is the erased
configuration model, where each node receives a number of half-edges that are
connected to half-edges of other nodes at random, and then self-loops are
removed and multiple edges are concatenated to make the graph simple. Although
asymptotic results for many properties of this model, such as the limiting
degree distribution, are known, the exact speed of convergence in terms of the
graph sizes remains an open question. We provide a first answer by analyzing
the size dependence of the average number of removed edges in the erased
configuration model. By combining known upper bounds with a Tauberian Theorem
we obtain upper bounds for the number of removed edges, in terms of the size of
the graph. Remarkably, when the degree distribution follows a power-law, we
observe three scaling regimes, depending on the power law exponent. Our results
provide a strong theoretical basis for evaluating finite-size effects in
networks
The interplay of microscopic and mesoscopic structure in complex networks
Not all nodes in a network are created equal. Differences and similarities
exist at both individual node and group levels. Disentangling single node from
group properties is crucial for network modeling and structural inference.
Based on unbiased generative probabilistic exponential random graph models and
employing distributive message passing techniques, we present an efficient
algorithm that allows one to separate the contributions of individual nodes and
groups of nodes to the network structure. This leads to improved detection
accuracy of latent class structure in real world data sets compared to models
that focus on group structure alone. Furthermore, the inclusion of hitherto
neglected group specific effects in models used to assess the statistical
significance of small subgraph (motif) distributions in networks may be
sufficient to explain most of the observed statistics. We show the predictive
power of such generative models in forecasting putative gene-disease
associations in the Online Mendelian Inheritance in Man (OMIM) database. The
approach is suitable for both directed and undirected uni-partite as well as
for bipartite networks
Discovering universal statistical laws of complex networks
Different network models have been suggested for the topology underlying
complex interactions in natural systems. These models are aimed at replicating
specific statistical features encountered in real-world networks. However, it
is rarely considered to which degree the results obtained for one particular
network class can be extrapolated to real-world networks. We address this issue
by comparing different classical and more recently developed network models
with respect to their generalisation power, which we identify with large
structural variability and absence of constraints imposed by the construction
scheme. After having identified the most variable networks, we address the
issue of which constraints are common to all network classes and are thus
suitable candidates for being generic statistical laws of complex networks. In
fact, we find that generic, not model-related dependencies between different
network characteristics do exist. This allows, for instance, to infer global
features from local ones using regression models trained on networks with high
generalisation power. Our results confirm and extend previous findings
regarding the synchronisation properties of neural networks. Our method seems
especially relevant for large networks, which are difficult to map completely,
like the neural networks in the brain. The structure of such large networks
cannot be fully sampled with the present technology. Our approach provides a
method to estimate global properties of under-sampled networks with good
approximation. Finally, we demonstrate on three different data sets (C.
elegans' neuronal network, R. prowazekii's metabolic network, and a network of
synonyms extracted from Roget's Thesaurus) that real-world networks have
statistical relations compatible with those obtained using regression models
Evolving Clustered Random Networks
We propose a Markov chain simulation method to generate simple connected
random graphs with a specified degree sequence and level of clustering. The
networks generated by our algorithm are random in all other respects and can
thus serve as generic models for studying the impacts of degree distributions
and clustering on dynamical processes as well as null models for detecting
other structural properties in empirical networks
The temporal event graph
Temporal networks are increasingly being used to model the interactions of complex systems. Most studies require the temporal aggregation of edges (or events) into discrete time steps to perform analysis. In this article, we describe a static, behavioural representation of a temporal network, the temporal event graph (TEG). The TEG describes the temporal network in terms of both inter-event time and two-event temporal motifs. By considering the distributions of these quantities in unison, we provide a new method to characterize the behaviour of individuals and collectives in temporal networks as well as providing a natural decomposition of the network. We illustrate the utility of the TEG by providing examples on both synthetic and real temporal networks
- …