14 research outputs found

    Mutations in STAT3 and IL12RB1 impair the development of human IL-17–producing T cells

    Get PDF
    The cytokines controlling the development of human interleukin (IL) 17–producing T helper cells in vitro have been difficult to identify. We addressed the question of the development of human IL-17–producing T helper cells in vivo by quantifying the production and secretion of IL-17 by fresh T cells ex vivo, and by T cell blasts expanded in vitro from patients with particular genetic traits affecting transforming growth factor (TGF) β, IL-1, IL-6, or IL-23 responses. Activating mutations in TGFB1, TGFBR1, and TGFBR2 (Camurati-Engelmann disease and Marfan-like syndromes) and loss-of-function mutations in IRAK4 and MYD88 (Mendelian predisposition to pyogenic bacterial infections) had no detectable impact. In contrast, dominant-negative mutations in STAT3 (autosomal-dominant hyperimmunoglobulin E syndrome) and, to a lesser extent, null mutations in IL12B and IL12RB1 (Mendelian susceptibility to mycobacterial diseases) impaired the development of IL-17–producing T cells. These data suggest that IL-12Rβ1– and STAT-3–dependent signals play a key role in the differentiation and/or expansion of human IL-17–producing T cell populations in vivo

    Rational Optimization of Cathode Composites for Sulfide-Based All-Solid-State Batteries

    No full text
    All-solid-state lithium-ion batteries with argyrodite solid electrolytes have been developed to attain high conductivities of 10−3 S cm−1 in studies aiming at fast ionic conductivity of electrolytes. However, no matter how high the ionic conductivity of the electrolyte, the design of the cathode composite is often the bottleneck for high performance. Thus, optimization of the composite cathode formulation is of utmost importance. Unfortunately, many reports limit their studies to only a few parameters of the whole electrode formulation. In addition, different measurement setups and testing conditions employed for all-solid-state batteries make a comparison of results from mutually independent studies quite difficult. Therefore, a detailed investigation on different key parameters for preparation of cathodes employed in all-solid-state batteries is presented here. Employing a rational approach for optimization of composite cathodes using solid sulfide electrolytes elucidated the influence of different parameters on the cycling performance. First, powder electrodes made without binders are investigated to optimize several parameters, including the active materials’ particle morphology, the nature and amount of the conductive additive, the particle size of the solid electrolyte, as well as the active material-to-solid electrolyte ratio. Finally, cast electrodes are examined to determine the influence of a binder on cycling performance

    Improved cyclability of Nickel-rich layered oxides

    Get PDF
    This study compares the physico- and electro- chemical properties of LiNi0.8Mn0.10Co0.1O2 (NMC811) and LiNi0.83Mn0.06Co0.09Al0.1O2 (NMCA) prepared by an oxalic acid co-precipitation. Deposition of a SiO2 surface coating was attempted via reaction of the powder with an amino silane prior to the final heat treatment. It was found that either the presence of small amounts of Al3+, or the compositional gradient resulting from a two step co-precipitation, caused increased crystal growth of the NMCA in comparison to NMC811. This led to improved cyclability in LP40 electrolyte. However, the SiO2 coating appeared incomplete and negatively impacted performance. Crystal cleavage preferably on the {001} planes was observed after 100 charge-discharge cycles, Downloaded from https://www.cambridge.org/core. SINTEF, on 13 Jun 2020 at 10:36:09, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1557/adv.2020.90 with consequent cathode electrolyte interphase formation in the crystal cracks. This is believed to cause capacity decay via lithium loss, and increased charge transfer resistance. An FEC based electrolyte improved the cyclability in all cases and even under extreme conditions (45°C and upper cycling potential of 4.5 V) NMCA showed a capacity retention of 85% after 100 cyclespublishedVersio

    Silicon anodes for lithium-ion batteries produced from recovered kerf powders

    Get PDF
    Silicon kerf waste from a photovoltaic silicon production process is assessed as an anode material for application as a lithium ion battery anode. In contrast to previous studies, the Si-kerf is used as-produced, with no chemical treatment or physical processing beyond solvent PEG removal. The as-produced Si-kerf performed as well as, or better than, previously reported Si-kerf anodes and is found to outperform a cleaned Si-kerf sample from blade sawing with a larger particle size. This highlights the advantage of the diamond wire cutting process, which yields relatively small particles. In half-cell testing, a cycle life >300 cycles at a capacity of 1000 mAh g−1 is achieved with high levels of FEC addition. Full-cell testing against an NMC 442 cathode resulted in specific capacities up to 150 mAh g−1 (NMC). A relatively high degree of lithium consumption arising from repeated SEI formation is present. It is concluded that pure Si-kerf is unsuitable for commercial application in Li-ion cells

    Improved cyclability of Nickel-rich layered oxides

    No full text
    This study compares the physico- and electro- chemical properties of LiNi0.8Mn0.10Co0.1O2 (NMC811) and LiNi0.83Mn0.06Co0.09Al0.1O2 (NMCA) prepared by an oxalic acid co-precipitation. Deposition of a SiO2 surface coating was attempted via reaction of the powder with an amino silane prior to the final heat treatment. It was found that either the presence of small amounts of Al3+, or the compositional gradient resulting from a two step co-precipitation, caused increased crystal growth of the NMCA in comparison to NMC811. This led to improved cyclability in LP40 electrolyte. However, the SiO2 coating appeared incomplete and negatively impacted performance. Crystal cleavage preferably on the {001} planes was observed after 100 charge-discharge cycles, Downloaded from https://www.cambridge.org/core. SINTEF, on 13 Jun 2020 at 10:36:09, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1557/adv.2020.90 with consequent cathode electrolyte interphase formation in the crystal cracks. This is believed to cause capacity decay via lithium loss, and increased charge transfer resistance. An FEC based electrolyte improved the cyclability in all cases and even under extreme conditions (45°C and upper cycling potential of 4.5 V) NMCA showed a capacity retention of 85% after 100 cycle

    Improved cyclability of Nickel-rich layered oxides

    No full text
    This study compares the physico- and electro- chemical properties of LiNi0.8Mn0.10Co0.1O2 (NMC811) and LiNi0.83Mn0.06Co0.09Al0.1O2 (NMCA) prepared by an oxalic acid co-precipitation. Deposition of a SiO2 surface coating was attempted via reaction of the powder with an amino silane prior to the final heat treatment. It was found that either the presence of small amounts of Al3+, or the compositional gradient resulting from a two step co-precipitation, caused increased crystal growth of the NMCA in comparison to NMC811. This led to improved cyclability in LP40 electrolyte. However, the SiO2 coating appeared incomplete and negatively impacted performance. Crystal cleavage preferably on the {001} planes was observed after 100 charge-discharge cycles, Downloaded from https://www.cambridge.org/core. SINTEF, on 13 Jun 2020 at 10:36:09, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1557/adv.2020.90 with consequent cathode electrolyte interphase formation in the crystal cracks. This is believed to cause capacity decay via lithium loss, and increased charge transfer resistance. An FEC based electrolyte improved the cyclability in all cases and even under extreme conditions (45°C and upper cycling potential of 4.5 V) NMCA showed a capacity retention of 85% after 100 cycle

    Coordination cages as permanently porous ionic liquids.

    No full text
    Porous materials are widely used in industry for applications that include chemical separations and gas scrubbing. These materials are typically porous solids, although the liquid state can be easier to manipulate in industrial settings. The idea of combining the size and shape selectivity of porous domains with the fluidity of liquids is a promising one and porous liquids composed of functionalized organic cages have recently attracted attention. Here we describe an ionic-liquid, porous, tetrahedral coordination cage. Complementing the gas binding observed in other porous liquids, this material also encapsulates non-gaseous guests-shape and size selectivity was observed for a series of isomeric alcohols. Three gaseous chlorofluorocarbon guests, trichlorofluoromethane, dichlorodifluoromethane and chlorotrifluoromethane, were also shown to be taken up by the liquid coordination cage with an affinity that increased with their size. We hope that these findings will lead to the synthesis of other porous liquids whose guest-uptake properties may be tailored to fulfil specific functions.L.M., A.B.G., C.J.E.H., and A.T. acknowledge support from the UK Engineering and Physical Sciences Research Council (EPSRC EP/P027067/1) and the European Research Council (ERC 695009). C.C.P. (EPSRC DTP grant EP/M508007/1) acknowledges the Engineering and Physical Sciences Research Council for funding. L.L. acknowledges an EPSRC Departmental Studentship. A.W. and A.R.S. acknowledge the National Centre for Research and Development for funding (LIDER/024/391/L-5/13/NCBR/2014 and PRELUDIUM UMO-2016/21/N/ST5/00851). T.D.B. would like to thank the Royal Society for a University Research Fellowship (UF150021), and for a Research Grant (RSG\R1\180395)

    Self-Assembled Novel BODIPY-Based Palladium Supramolecules and Their Cellular Localization

    No full text
    Four new palladium metal supramolecules with triangular/square architectures derived from boron dipyrromethane (BODIPY) ligands were synthesized by self-assembly and fully characterized by <sup>1</sup>H and <sup>31</sup>P NMR, electrospray ionization mass spectrometry, and single-crystal X-ray diffraction. These supramolecules were more cytotoxic to brain cancer (glioblastoma) cells than to normal lung fibroblasts. Their cytotoxicity to the glioblastoma cells was higher than that of a benchmark metal-based chemotherapy drug, cisplatin. The characteristic green fluorescence of the BODIPY ligands in these supramolecules permitted their intracellular visualization using confocal microscopy, and the compounds were localized in the cytoplasm and on the plasma membrane
    corecore