55 research outputs found

    Biomechanical evaluation of a novel biomimetic artificial intervertebral disc in canine cervical cadaveric spines

    Get PDF
    Background Context Cervical disc replacement (CDR) aims to restore motion of the treated level to reduce the risk of adjacent segment disease (ASD) compared with spinal fusion. However, first-generation articulating devices are unable to mimic the complex deformation kinematics of a natural disc. Thus, a biomimetic artificial intervertebral CDR (bioAID), containing a hydroxyethylmethacrylate (HEMA)—sodium methacrylate (NaMA) hydrogel core representing the nucleus pulposus, an ultra-high-molecular-weight-polyethylene fiber jacket as annulus fibrosus, and titanium endplates with pins for primary mechanical fixation, was developed. Purpose To assess the initial biomechanical effect of the bioAID on the kinematic behavior of the canine spine, an ex vivo biomechanical study in 6-degrees-of-freedom was performed. Study Design A canine cadaveric biomechanical study. Methods Six cadaveric canine specimens (C3-C6) were tested in flexion-extension (FE), lateral bending (LB) axial rotation (AR) using a spine tester in three conditions: intact, after C4-C5 disc replacement with bioAID, and after C4-C5 interbody fusion. A hybrid protocol was used where first the intact spines were subjected to a pure moment of ±1 Nm, whereafter the treated spines were subjected to the full range of motion (ROM) of the intact condition. 3D segmental motions at all levels were measured while recording the reaction torsion. Biomechanical parameters studied included ROM, neutral zone (NZ), and intradiscal pressure (IDP) at the adjacent cranial level (C3-C4). Results The bioAID retained the sigmoid shape of the moment-rotation curves with a NZ similar to the intact condition in LB and FE. Additionally, the normalized ROMs at the bioAID-treated level were statistically equivalent to intact during FE and AR while slightly decreased in LB. At the two adjacent levels, ROMs showed similar values for the intact compared to the bioAID for FE and AR and an increase in LB. In contrast, levels adjacent to the fused segment showed an increased motion in FE and LB as compensation for the loss of motion at the treated level. The IDP at the adjacent C3-C4 level after implantation of bioAID was close to intact values. After fusion, increased IDP was found compared with intact but did not reach statistical significance. Conclusion This study indicates that the bioAID can mimic the kinematic behavior of the replaced intervertebral disc and preserves that for the adjacent levels better than fusion. As a result, CDR using the novel bioAID is a promising alternative treatment for replacing severely degenerated intervertebral discs

    Subcutaneous Adipose Tissue and Systemic Inflammation Are Associated With Peripheral but Not Hepatic Insulin Resistance in Humans

    Get PDF
    Obesity-related insulin resistance (IR) may develop in multiple organs, representing different etiologies towards cardiometabolic diseases. We identified abdominal subcutaneous adipose tissue (ScAT) transcriptome profiles in relation to liver or muscle IR by means of RNA sequencing in overweight/obese participants of the DiOGenes cohort (n=368). Tissue-specific IR phenotypes were derived from a 5-point oral glucose tolerance test. Hepatic and muscle IR were characterized by distinct abdominal ScAT transcriptome profiles. Genes related to extracellular remodeling were upregulated in individuals with primarily hepatic IR, whilst genes related to inflammation were upregulated in individuals with primarily muscle IR. In line with this, in two independent cohorts, CODAM (n=325) and the Maastricht Study (n=685), an increased systemic low-grade inflammation profile was specifically related to muscle IR, but not to liver IR. We propose that increased ScAT inflammatory gene expression may translate into an increased systemic inflammatory profile, linking ScAT inflammation to the muscle IR phenotype. These distinct IR phenotypes may provide leads for more personalized prevention of cardiometabolic diseases. DiOGenes was registered at clinicaltrials.gov as NCT00390637

    Innovative remote plasma source for atomic layer deposition for GaN devices

    Get PDF
    High-quality dielectric films could enable GaN normally off high-electron-mobility transistors (HEMTs). Plasma atomic layer deposition (ALD) is known to allow for controlled high-quality thin-film deposition, and in order to not exceed energy and flux levels leading to device damage, the plasma used should preferably be remote for many applications. This article outlines ion energy flux distribution functions and flux levels for a new remote plasma ALD system, Oxford Instruments Atomfab™, which includes an innovative, RF-driven, remote plasma source. The source design is optimized for ALD for GaN HEMTs for substrates up to 200 mm in diameter and allows for Al2O3 ALD cycles of less than 1 s. Modest ion energies of <50 eV and very low ion flux levels of <1013 cm−2 s−1 were found at low-damage conditions. The ion flux can be increased to the high 1014 cm−2 s−1 range if desired for other applications. Using low-damage conditions, fast ALD saturation behavior and good uniformity were demonstrated for Al2O3. For films of 20 nm thickness, a breakdown voltage value of 8.9 MV/cm was obtained and the Al2O3 films were demonstrated to be suitable for GaN HEMT devices where the combination with plasma pretreatment and postdeposition anneals resulted in the best device parameters

    Systems Biology in ELIXIR: modelling in the spotlight

    Get PDF
    In this white paper, we describe the founding of a new ELIXIR Community - the Systems Biology Community - and its proposed future contributions to both ELIXIR and the broader community of systems biologists in Europe and worldwide. The Community believes that the infrastructure aspects of systems biology - databases, (modelling) tools and standards development, as well as training and access to cloud infrastructure - are not only appropriate components of the ELIXIR infrastructure, but will prove key components of ELIXIR\u27s future support of advanced biological applications and personalised medicine. By way of a series of meetings, the Community identified seven key areas for its future activities, reflecting both future needs and previous and current activities within ELIXIR Platforms and Communities. These are: overcoming barriers to the wider uptake of systems biology; linking new and existing data to systems biology models; interoperability of systems biology resources; further development and embedding of systems medicine; provisioning of modelling as a service; building and coordinating capacity building and training resources; and supporting industrial embedding of systems biology. A set of objectives for the Community has been identified under four main headline areas: Standardisation and Interoperability, Technology, Capacity Building and Training, and Industrial Embedding. These are grouped into short-term (3-year), mid-term (6-year) and long-term (10-year) objectives

    The potential for immunoglobulins and host defense peptides (HDPs) to reduce the use of antibiotics in animal production

    Get PDF
    Abstract Innate defense mechanisms are aimed at quickly containing and removing infectious microorganisms and involve local stromal and immune cell activation, neutrophil recruitment and activation and the induction of host defense peptides (defensins and cathelicidins), acute phase proteins and complement activation. As an alternative to antibiotics, innate immune mechanisms are highly relevant as they offer rapid general ways to, at least partially, protect against infections and enable the build-up of a sufficient adaptive immune response. This review describes two classes of promising alternatives to antibiotics based on components of the innate host defense. First we describe immunoglobulins applied to mimic the way in which they work in the newborn as locally acting broadly active defense molecules enforcing innate immunity barriers. Secondly, the potential of host defense peptides with different modes of action, used directly, induced in situ or used as vaccine adjuvants is described

    Risk Reducing Salpingectomy and Delayed Oophorectomy in high risk women: views of cancer geneticists, genetic counsellors and gynaecological oncologists in the UK

    Get PDF
    Risk-reducing-salpingectomy and Delayed-Oophorectomy (RRSDO) is being proposed as a two-staged approach in place of RRSO to reduce the risks associated with premature menopause in high-risk women. We report on the acceptability/attitude of UK health professionals towards RRSDO. An anonymised web-based survey was sent to UK Cancer Genetics Group (CGG) and British Gynaecological Cancer Society (BGCS) members to assess attitudes towards RRSDO. Baseline characteristics were described using descriptive statistics. A Chi square test was used to compare categorical, Kendal-tau-b test for ordinal and Mann–Whitney test for continuous variables between two groups. 173/708 (24.4 %) of invitees responded. 71 % respondents (CGG = 57 %/BGCS = 83 %, p = 0.005) agreed with the tubal hypothesis for OC, 55 % (CGG = 42 %/BGCS = 66 %, p = 0.003) had heard of RRSDO and 48 % (CGG = 46 %/BGCS = 50 %) felt evidence was not currently strong enough for introduction into clinical practice. However, 60 % respondents’ (CGG = 48 %/BGCS = 71 %, p = 0.009) favoured offering RRSDO to high-risk women declining RRSO, 77 % only supported RRSDO within a clinical trial (CGG = 78 %/BGCS = 76 %) and 81 % (CGG = 76 %/BGCS = 86 %) advocated a UK-wide registry. Vasomotor symptoms (72 %), impact on sexual function (63 %), osteoporosis (59 %), hormonal-therapy (55 %) and subfertility (48 %) related to premature menopause influenced their choice of RRSDO. Potential barriers to offering the two-stage procedure included lack of data on precise level of benefit (83 %), increased surgical morbidity (79 %), loss of breast cancer risk reduction associated with oophorectomy (68 %), need for long-term follow-up (61 %) and a proportion not undergoing DO (66 %). There were variations in perception between BGCS/CGG members which are probably attributable to differences in clinical focus/expertise between these two groups. Despite concerns, there is reasonable support amongst UK clinicians to offering RRSDO to premenopausal high-risk women wishing to avoid RRSO, within a prospective clinical trial.This work has not been directly funded by any commercial organisation, or charity

    Disorders of sex development : insights from targeted gene sequencing of a large international patient cohort

    Get PDF
    Background: Disorders of sex development (DSD) are congenital conditions in which chromosomal, gonadal, or phenotypic sex is atypical. Clinical management of DSD is often difficult and currently only 13% of patients receive an accurate clinical genetic diagnosis. To address this we have developed a massively parallel sequencing targeted DSD gene panel which allows us to sequence all 64 known diagnostic DSD genes and candidate genes simultaneously. Results: We analyzed DNA from the largest reported international cohort of patients with DSD (278 patients with 46, XY DSD and 48 with 46, XX DSD). Our targeted gene panel compares favorably with other sequencing platforms. We found a total of 28 diagnostic genes that are implicated in DSD, highlighting the genetic spectrum of this disorder. Sequencing revealed 93 previously unreported DSD gene variants. Overall, we identified a likely genetic diagnosis in 43% of patients with 46, XY DSD. In patients with 46, XY disorders of androgen synthesis and action the genetic diagnosis rate reached 60%. Surprisingly, little difference in diagnostic rate was observed between singletons and trios. In many cases our findings are informative as to the likely cause of the DSD, which will facilitate clinical management. Conclusions: Our massively parallel sequencing targeted DSD gene panel represents an economical means of improving the genetic diagnostic capability for patients affected by DSD. Implementation of this panel in a large cohort of patients has expanded our understanding of the underlying genetic etiology of DSD. The inclusion of research candidate genes also provides an invaluable resource for future identification of novel genes

    An organelle-specific protein landscape identifies novel diseases and molecular mechanisms

    Get PDF
    Contains fulltext : 158967.pdf (publisher's version ) (Open Access)Cellular organelles provide opportunities to relate biological mechanisms to disease. Here we use affinity proteomics, genetics and cell biology to interrogate cilia: poorly understood organelles, where defects cause genetic diseases. Two hundred and seventeen tagged human ciliary proteins create a final landscape of 1,319 proteins, 4,905 interactions and 52 complexes. Reverse tagging, repetition of purifications and statistical analyses, produce a high-resolution network that reveals organelle-specific interactions and complexes not apparent in larger studies, and links vesicle transport, the cytoskeleton, signalling and ubiquitination to ciliary signalling and proteostasis. We observe sub-complexes in exocyst and intraflagellar transport complexes, which we validate biochemically, and by probing structurally predicted, disruptive, genetic variants from ciliary disease patients. The landscape suggests other genetic diseases could be ciliary including 3M syndrome. We show that 3M genes are involved in ciliogenesis, and that patient fibroblasts lack cilia. Overall, this organelle-specific targeting strategy shows considerable promise for Systems Medicine

    An Empirical Comparison of Consumer Innovation Adoption Models: Implications for Subsistence Marketplaces

    Get PDF
    So called “pro-poor” innovations may improve consumer wellbeing in subsistence marketplaces. However, there is little research that integrates the area with the vast literature on innovation adoption. Using a questionnaire where respondents were asked to provide their evaluations about a mobile banking innovation, this research fills this gap by providing empirical evidence of the applicability of existing innovation adoption models in subsistence marketplaces. The study was conducted in Bangladesh among a geographically dispersed sample. The data collected allowed an empirical comparison of models in a subsistence context. The research reveals the most useful models in this context to be the Value Based Adoption Model and the Consumer Acceptance of Technology model. In light of these findings and further examination of the model comparison results the research also shows that consumers in subsistence marketplaces are not just motivated by functionality and economic needs. If organizations cannot enhance the hedonic attributes of a pro-poor innovation, and reduce the internal/external constraints related to adoption of that pro-poor innovation, then adoption intention by consumers will be lower

    Remdesivir and three other drugs for hospitalised patients with COVID-19: final results of the WHO Solidarity randomised trial and updated meta-analyses.

    Get PDF
    BACKGROUND World Health Organization expert groups recommended mortality trials of four repurposed antiviral drugs - remdesivir, hydroxychloroquine, lopinavir, and interferon beta-1a - in patients hospitalized with coronavirus disease 2019 (Covid-19). METHODS We randomly assigned inpatients with Covid-19 equally between one of the trial drug regimens that was locally available and open control (up to five options, four active and the local standard of care). The intention-to-treat primary analyses examined in-hospital mortality in the four pairwise comparisons of each trial drug and its control (drug available but patient assigned to the same care without that drug). Rate ratios for death were calculated with stratification according to age and status regarding mechanical ventilation at trial entry. RESULTS At 405 hospitals in 30 countries, 11,330 adults underwent randomization; 2750 were assigned to receive remdesivir, 954 to hydroxychloroquine, 1411 to lopinavir (without interferon), 2063 to interferon (including 651 to interferon plus lopinavir), and 4088 to no trial drug. Adherence was 94 to 96% midway through treatment, with 2 to 6% crossover. In total, 1253 deaths were reported (median day of death, day 8; interquartile range, 4 to 14). The Kaplan-Meier 28-day mortality was 11.8% (39.0% if the patient was already receiving ventilation at randomization and 9.5% otherwise). Death occurred in 301 of 2743 patients receiving remdesivir and in 303 of 2708 receiving its control (rate ratio, 0.95; 95% confidence interval [CI], 0.81 to 1.11; P = 0.50), in 104 of 947 patients receiving hydroxychloroquine and in 84 of 906 receiving its control (rate ratio, 1.19; 95% CI, 0.89 to 1.59; P = 0.23), in 148 of 1399 patients receiving lopinavir and in 146 of 1372 receiving its control (rate ratio, 1.00; 95% CI, 0.79 to 1.25; P = 0.97), and in 243 of 2050 patients receiving interferon and in 216 of 2050 receiving its control (rate ratio, 1.16; 95% CI, 0.96 to 1.39; P = 0.11). No drug definitely reduced mortality, overall or in any subgroup, or reduced initiation of ventilation or hospitalization duration. CONCLUSIONS These remdesivir, hydroxychloroquine, lopinavir, and interferon regimens had little or no effect on hospitalized patients with Covid-19, as indicated by overall mortality, initiation of ventilation, and duration of hospital stay. (Funded by the World Health Organization; ISRCTN Registry number, ISRCTN83971151; ClinicalTrials.gov number, NCT04315948.)
    corecore