897 research outputs found

    Varietats tradicionals, obtenció de cultivars amb característiques organolèptiques superiors i agricultura en espais periurbans catalans

    Get PDF
    En les societats riques, on els membres tenen majoritàriament cobertes les necessitats nutricionals, hi ha ara una demanada creixent de menjar que satisfaci també desitjos sensorials. Les necessitats sensorials tenen un component generalista (per exemple, preferència pel dolç) i un altre de particular. Les poques varietats tradicionals que han resistit la competència de les varietats millorades per producció acostumen a tenir un gran prestigi gastronòmic en les seves zones d'origen tot i que presenten problemes agronòmics perquè no han estat sotmeses a millora genètica. Són un bon punt de partida per crear nous productes destinats als mercats de proximitat (o més amplis, si són molt bones) i també una font de gens per introduir en cultivars seleccionats per a producció. Treballar amb varietats tradicionals té, a més, l'avantatge d'aprofitar els valors culturals que tenen aquestes varietats. Catalunya reuneix per la seva climatologia, orografia i història un bon nombre de varietats tradicionals candidates a ser recuperades per a aquest segment de consumidors. Paral·lelament, l'emergent agricultura periurbana les ha de tenir en compte com una peça clau en el nou model d'explotacions que s'està modelitzant

    Laminar and Cellular Distribution of Monoamine Receptors in Rat Medial Prefrontal Cortex

    Get PDF
    The prefrontal cortex (PFC) is deeply involved in higher brain functions, many of which are altered in psychiatric conditions. The PFC exerts a top-down control of most cortical and subcortical areas through descending pathways and is densely innervated by axons emerging from the brainstem monoamine cell groups, namely, the dorsal and median raphe nuclei (DR and MnR, respectively), the ventral tegmental area and the locus coeruleus (LC). In turn, the activity of these cell groups is tightly controlled by afferent pathways arising from layer V PFC pyramidal neurons. The reciprocal connectivity between PFC and monoamine cell groups is of interest to study the pathophysiology and treatment of severe psychiatric disorders, such as major depression and schizophrenia, inasmuch as antidepressant and antipsychotic drugs target monoamine receptors/transporters expressed in these areas. Here we review previous reports examining the presence of monoamine receptors in pyramidal and GABAergic neurons of the PFC using double in situ hybridization. Additionally, we present new data on the quantitative layer distribution (layers I, II–III, V, and VI) of monoamine receptor-expressing cells in the cingulate (Cg), prelimbic (PrL) and infralimbic (IL) subfields of the medial PFC (mPFC). The receptors examined include serotonin 5-HT1A, 5-HT2A, 5-HT2C, and 5-HT3, dopamine D1 and D2 receptors, and α1A-, α1B-, and α1D-adrenoceptors. With the exception of 5-HT3 receptors, selectively expressed by layers I–III GABA interneurons, the rest of monoamine receptors are widely expressed by pyramidal and GABAergic neurons in intermediate and deep layers of mPFC (5-HT2C receptors are also expressed in layer I). This complex distribution suggests that monoamines may modulate the communications between PFC and cortical/subcortical areas through the activation of receptors expressed by neurons in intermediate (e.g., 5-HT1A, 5-HT2A, α1D-adrenoceptors, dopamine D1 receptors) and deep layers (e.g., 5-HT1A, 5-HT2A, α1A-adrenoceptors, dopamine D2 receptors), respectively. Overall, these data provide a detailed framework to better understand the role of monoamines in the processing of cognitive and emotional signals by the PFC. Likewise, they may be helpful to characterize brain circuits relevant for the therapeutic action of antidepressant and antipsychotic drugs and to improve their therapeutic action, overcoming the limitations of current drugs

    Selective enhancement of mesocortical dopaminergic transmission by noradrenergic drugs: therapeutic opportunities in schizophrenia

    Get PDF
    The superior efficacy of atypical vs. classical antipsychotic drugs to treat negative symptoms and cognitive deficits in schizophrenia appears related to their ability to enhance mesocortical dopamine (DA) function. Given that noradrenergic (NE) transmission contributes to cortical DA output, we assessed the ability of NE-targeting drugs to modulate DA release in medial prefrontal cortex (mPFC) and nucleus accumbens (NAc), with the aim of selectively increasing mesocortical DA. Extracellular DA was measured using brain microdialysis in rat mPFC and NAc after local/systemic drug administration, electrical stimulation and selective brain lesions. Local GBR12909 [a selective DA transporter (DAT) inhibitor] administration increased DA output more in NAc than in mPFC whereas reboxetine [a selective NE transporter (NET) inhibitor] had an opposite regional profile. DA levels increased comparably in both regions of control rats after local nomifensine (DAT+NET inhibitor) infusion, but this effect was much lower in PFC of NE-lesioned rats (DSP-4) and in NAc of 6-OHDA-lesioned rats. Electrical stimulation of the locus coeruleus preferentially enhanced DA output in mPFC. Consistently, the administration of reboxetine+RX821002 (an α2-adrenoceptor antagonist) dramatically enhanced DA output in mPFC (but not NAc). This effect also occurred when reboxetine+RX821002 were co-administered with haloperidol or clozapine. The preferential contribution of the NE system to PFC DA allows selective enhancement of DA transmission by simultaneously blocking NET and α2-adrenoceptors, thus preventing the autoreceptor-mediated negative feedback on NE activity. Our results highlight the importance of NET and α2-adrenoceptors as targets for treating negative/cognitive symptoms in schizophrenia and related psychiatric disorders.This work was supported by grant SAF 2007-62378 (MICIN, Spain). Support from SENY Fundació is also acknowledged. M.M. is a recipient of a predoctoral fellowship from CSIC (I3P programme). A.B. is supported by the research stabilization programme of the Health Department of Generalitat de Catalunya.Peer reviewe

    PCP-based mice models of schizophrenia: differential behavioral, neurochemical and cellular effects of acute and subchronic treatments

    Get PDF
    Rationale N-methyl-D-aspartate receptor (NMDA-R) hypofunction has been proposed to account for the pathophysiology of schizophrenia. Thus, NMDA-R blockade has been used to model schizophrenia in experimental animals. Acute and repeated treatments have been successfully tested; however, long-term exposure toNMDA-R antagonists more likely resembles the core symptoms of the illness. Objectives To explore whether schizophrenia-related behaviors are differentially induced by acute and subchronic phencyclidine (PCP) treatment in mice and to examine the neurobiological bases of these differences. Results Subchronic PCP induced a sensitization of acute locomotor effects. Spontaneous alternation in a T-maze and novel object recognition performance were impaired after subchronic but not acute PCP, suggesting a deficit in working memory. On the contrary, reversal learning and immobility in the tail suspension test were unaffected. Subchronic PCP significantly reduced basal dopamine but not serotonin output in medial prefrontal cortex (mPFC) and markedly decreased the expression of tyrosine hydroxylase in the ventral tegmental area. Finally, acute and subchronic PCP treatments evoked a different pattern of c-fos expression. At 1 h post-treatment, acute PCP increased c-fos expression in many cortical regions, striatum, thalamus, hippocampus, and dorsal raphe. However, the increased c-fos expression produced by subchronic PCP was restricted to the retrosplenial cortex, thalamus, hippocampus, and supramammillary nucleus. Four days after the last PCP injection, c-fos expression was still increased in the hippocampus of subchronic PCP-treated mice. Conclusions Acute and subchronic PCP administration differently affects neuronal activity in brain regions relevant to schizophrenia, which could account for their different behavioral effectsThis work has received support from the Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM (13INT4 intramural project), and the Innovative Medicine Initiative Joint Undertaking under grant agreement no. 115008 of which resources are composed of EFPIA in-kind contribution and financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013)Peer Reviewe

    Unraveling monoamine receptors involved in the action of typical and atypical antipsychotics on glutamatergic and serotonergic transmission in prefrontal cortex

    Get PDF
    El pdf del artículo es la versión post-print.The systemic administration of noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists has been considered as a pharmacological model of schizophrenia. In the present work, we used in vivo microdialysis to examine: first, the effects of MK-801, on the efflux of glutamate and serotonin (5-HT) in the medial prefrontal cortex (mPFC) of the rat; second, whether the MK-801-induced changes in the cortical efflux of both transmitters could be blocked by atypical (clozapine and olanzapine) and classical (haloperidol and chlorpromazine) antipsychotic drugs given intra-mPFC; and third, the role of local blockade of dopamine D2/D3/D4, serotonin 5-HT2A and α1-adrenergic receptors as well as agonism at dopamine D1/D5 and 5-HT1A receptors in the mPFC on the increased efflux of glutamate and 5-HT elicited by MK-801. The four antipsychotic drugs blocked the MK-801-induced increase in glutamate, whereas only clozapine and olanzapine were able to block the increased efflux of 5-HT. Furthermore, M100907 (5-HT2A antagonist), BAY x 3702 (5-HT1A agonist) and prazosin (α1-adrenergic antagonist) blocked the MK-801-induced increase of 5-HT and glutamate in the mPFC. In contrast, raclopride (D2/D3 antagonist) and L-745,870 (D4 antagonist) were able to prevent the increased efflux of glutamate (but not that of 5-HT) elicited by MK-801. SKF-38393 (dopamine D1/D5 agonist) also prevented the MK-801-induced increase of glutamate in the mPFC, but the same effect on cortical 5-HT was reached only at the highest concentration tested. We suggest that the blockade of an exacerbated 5-HT release in the mPFC induced by NMDA antagonists can be a characteristic of atypical antipsychotic drugs. Moreover, we propose that D 2/D3/D4 receptor antagonists would act predominantly on a subpopulation of GABAergic interneurons of the mPFC, thus enhancing cortical inhibition, which would prevent an excessive glutamatergic transmission. Dopamine D1/D5 agonists would further stimulate GABA release from other subpopulation of interneurons controlling cortical output to the dorsal raphe nucleus. Atypical antipsychotic drugs might further act upon 5-HT2A, 5-HT1A and α1- adrenoceptors present in pyramidal cells (including those projecting to the dorsal raphe nucleus), which would directly inhibit an excessive excitability of these cells. © 2010 Bentham Science Publishers Ltd.This work was supported by the Spanish Ministry of Health (FIS Grant PI070111 to A. A.), the Spanish Ministry of Education and Science (Grant SAF 2007-62378 to F.A.), and the Generalitat de Catalunya (SGR2005/00758). X.L.- G. is the recipient of a predoctoral fellowship from the Consejo Superior de Investigaciones Cientificas (CSIC).Peer Reviewe

    Involvement of 5-HT3 receptors in the action of vortioxetine in rat brain: focus on glutamatergic and GABAergic neurotransmission

    Get PDF
    The antidepressant vortioxetine is a 5-HT3-R, 5-HT7-R and 5-HT1D-R antagonist, 5-HT1B-R partial agonist, 5-HT1A-R agonist, and serotonin (5-HT) transporter (SERT) inhibitor. Vortioxetine occupies all targets at high therapeutic doses and only SERT and 5-HT3-R at low doses. Vortioxetine increases extracellular monoamine concentrations in rat forebrain more than selective serotonin reuptake inhibitors (SSRI) and shows pro-cognitive activity in preclinical models. Given its high affinity for 5-HT3-R (Ki = 3.7 nM), selectively expressed in GABA interneurons, we hypothesized that vortioxetine may disinhibit glutamatergic and monoaminergic neurotransmission following 5-HT3-R blockade. Here we assessed vortioxetine effect on pyramidal neuron activity and extracellular 5-HT concentration using in vivo extracellular recordings of rat medial prefrontal cortex (mPFC) pyramidal neurons and microdialysis in mPFC and ventral hippocampus (vHPC). Vortioxetine, but not escitalopram, increased pyramidal neuron discharge in mPFC. This effect was prevented by SR57227A (5-HT3-R agonist) and was mimicked by ondansetron (5-HT3-R antagonist) and by escitalopram/ondansetron combinations. In microdialysis experiments, ondansetron augmented the 5-HT-enhancing effect of escitalopram in mPFC and vHPC. Local ondansetron in vHPC augmented escitalopram effect, indicating the participation of intrinsic mechanisms. Since 5-HT neurons express GABAB receptors, we examined their putative involvement in controlling 5-HT release after 5-HT3-R blockade. Co-perfusion of baclofen (but not muscimol) reversed the increased 5-HT levels produced by vortioxetine and escitalopram/ondansetron combinations in vHPC. The present results suggest that vortioxetine increases glutamatergic and serotonergic neurotransmission in rat forebrain by blocking 5-HT3 receptors in GABA interneurons.This work was supported by a grant from Lundbeck A/S and by grants SAF 2012-35183 and SAF 2015-68346-P from the Spanish Ministry of Economy and Competitiveness, co-financed by European Regional Development Fund (ERDF) and grant PI12/00156 (Instituto de Salud Carlos III, co-financed by European Regional Development Fund (ERDF). Support from the Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) and Generalitat de Catalunya Grup de Recerca Consolidat, (2014SGR798) is also acknowledged. FA and PC are PI and co-PI from a grant from Lundbeck A/S to examine the mechanism of action of vortioxetine. FA has also received lecture and consultation fees from Lundbeck A/S and is scientific advisor to Neurolixis. CS is a Lundbeck A/S employee.Peer reviewe

    Clozapine reverses phencyclidine-induced desynchronization of prefrontal cortex through a 5-HT 1A receptor-dependent mechanism

    Get PDF
    The non-competitive NMDA receptor (NMDA-R) antagonist phencyclidine (PCP) - used as a pharmacological model of schizophrenia - disrupts prefrontal cortex (PFC) activity. PCP markedly increased the discharge rate of pyramidal neurons and reduced slow cortical oscillations (SCO; 0.15-4 Hz) in rat PFC. Both effects were reversed by classical (haloperidol) and atypical (clozapine) antipsychotic drugs. Here we extended these observations to mice brain and examined the potential involvement of 5-HT 2A and 5-HT 1A receptors (5-HT 2AR and 5-HT 1AR, respectively) in the reversal by clozapine of PCP actions. Clozapine shows high in vitro affinity for 5-HT 2AR and behaves as partial agonist in vivo at 5-HT 1AR. We used wild-type (WT) mice and 5-HT 1AR and 5-HT 2AR knockout mice of the same background (C57BL/6) (KO-1A and KO-2A, respectively). Local field potentials (LFPs) were recorded in the PFC of WT, KO-1A, and KO-2A mice. PCP (10 mg/kg, intraperitoneally) reduced SCO equally in WT, KO-2A, and KO-1A mice (58±4%, 42±7%, and 63±7% of pre-drug values, n = 23, 13, 11, respectively; p < 0.0003). Clozapine (0.5 mg/kg, intraperitoneally) significantly reversed PCP effect in WT and KO-2A mice, but not in KO-1A mice nor in WT mice pretreated with the selective 5-HT 1AR antagonist WAY-100635.The PCP-induced disorganization of PFC activity does not appear to depend on serotonergic function. However, the lack of effect of clozapine in KO-1A mice and the prevention by WAY-100635 indicates that its therapeutic action involves 5-HT 1AR activation without the need to block 5-HT 2AR, as observed with clozapine-induced cortical dopamine release. © 2012 American College of Neuropsychopharmacology. All rights reserved.The work leading to these results has received funding from the Innovative Medicines Initiative Joint Undertaking (IMI) under Grant Agreement No. 115008 (NEWMEDS). This work was supported by Instituto de Salud Carlos III, Centro de Investigacion Biomedica en Red de Salud Mental (CIBERSAM) and Grants SAF 2007-62378, FIS PI09/1245 (PN de I + D + I 2008-2011, ISCIII-Subdireccion General de Evaluacion y Fomento de la Investigacion), CIBERSAM (P82, 11INT3), and SENY Fundacio. PC is supported by the Researcher Stabilization Program of the Health Department of the Generalitat de Catalunya. LK was recipient of a predoctoral fellowship from the Ministry of Science and Education.Peer Reviewe

    Is it still necessary to continue to collect crop genetic resources in the Mediterranean area? a case study in Catalonia

    Get PDF
    © 2017 The New York Botanical Garden Crop genetic resources have been extensively collected in Europe in the last century, creating large, publicly available ex situ collections. While this huge genetic diversity is often underutilized, in recent decades, several initiatives have emerged at the local level to collect germplasm cultivated on farm. Uncoordinated actors often carry out these collecting missions without considering previously collected data. To explore whether new collecting missions are likely to be worthwhile, we studied the crop genetic resources conservation network in Catalonia by analyzing the passport data and geographical distribution of germplasm stored in seed banks. Moreover, to determine whether this germplasm was representative of the diversity cultivated on farm, we performed new collecting missions in four randomly selected areas in the European Union’s Natura 2000 network and compared the results with the ex situ databases. Seed banks currently hold a large germplasm collection (2931 accessions), although most materials are conserved in private collections without regulated systems for seed regeneration and are not present as duplicates in the National Inventory. One important shortcoming of the ex situ network is that the germplasm conserved ex situ shows a low geographical coverage, representing only 35.3% of the municipalities in Catalonia. Our new missions allowed us to collect 234 accessions, mostly tomatoes (17.5%) and beans (16.2%). The ecological indicators’ richness (both at species (S) and variety (V) levels), total abundance (A), and the Shannon-Weaver diversity index calculated at species (H2, considering the different accessions of each variety as a single population) and variety levels (H3, considering the intra-varietal genetic diversity) were higher in the newly collected germplasm than in the ex situ collections, suggesting that seed banks do not accurately represent the genetic diversity still cultivated on farm. Moreover, some important landraces from each area were absent or underrepresented in the ex situ collections. Thus, it is necessary to continue to devote efforts to collecting germplasm; better organization between actors and targeting specific species/varieties can increase the efficiency of new collecting missions. As a conclusion, we propose different criteria to guide new missions and to improve the network’s conservation activities.Postprint (updated version

    Selective Enhancement of Mesocortical Dopaminergic Transmission by Noradrenergic Drugs: Therapeutic Opportunities in Schizophrenia

    Get PDF
    The superior efficacy of atypical vs. classical antipsychotic drugs to treat negative symptoms and cognitive deficits in schizophrenia appears related to their ability to enhance mesocortical dopamine (DA) function. Given that noradrenergic (NE) transmission contributes to cortical DA output, we assessed the ability of NE-targeting drugs to modulate DA release in medial prefrontal cortex (mPFC) and nucleus accumbens (NAc), with the aim of selectively increasing mesocortical DA. Extracellular DA was measured using brain microdialysis in rat mPFC and NAc after local/systemic drug administration, electrical stimulation and selective brain lesions. Local GBR12909 [a selective DA transporter (DAT) inhibitor] administration increased DA output more in NAc than in mPFC whereas reboxetine [a selective NE transporter (NET) inhibitor] had an opposite regional profile. DA levels increased comparably in both regions of control rats after local nomifensine (DAT+NET inhibitor) infusion, but this effect was much lower in PFC of NE-lesioned rats (DSP-4) and in NAc of 6-OHDA-lesioned rats. Electrical stimulation of the locus coeruleus preferentially enhanced DA output in mPFC. Consistently, the administration of reboxetine+RX821002 (an α2-adrenoceptor antagonist) dramatically enhanced DA output in mPFC (but not NAc). This effect also occurred when reboxetine+RX821002 were co-administered with haloperidol or clozapine. The preferential contribution of the NE system to PFC DA allows selective enhancement of DA transmission by simultaneously blocking NET and α2-adrenoceptors, thus preventing the autoreceptor-mediated negative feedback on NE activity. Our results highlight the importance of NET and α2-adrenoceptors as targets for treating negative/cognitive symptoms in schizophrenia and related psychiatric disorders
    • …
    corecore