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INTRODUCTION 

The NMDA receptor hypofunction hypothesis of schizophrenia was established 

after the observation that NMDA receptor antagonists such as phencyclidine 

(PCP) and ketamine can induce, in healthy individuals, altered behavioral states 

that resemble the positive and negative symptoms as well as the cognitive 

deficits seen in schizophrenia [1-3]. In addition, ketamine can heighten 

psychotic episodes in patients with schizophrenia [4-6]. In rodents, PCP and the 

more potent and selective noncompetitive NMDA receptor antagonist, 

dizocilpine (MK-801), cause hyperlocomotion and stereotypies [7-9]. The 

hyperactivity is considered to be due predominantly to activation of D2 receptors 

in the nucleus accumbens, whereas stereotypies are caused by stimulation of 

D2 receptors in the caudate-putamen [10]. These behaviors have been 

potentially related to positive symptoms of schizophrenia [11-13]. Acute NMDA 

receptor antagonism has also been reported to increase the release of 

glutamate [14-18], dopamine [19, 20], and serotonin (5-HT) [8, 16-18, 21, 22] in 

the medial prefrontal cortex (mPFC). It has been proposed that stimulation of 

NMDA receptors on the GABA inhibitory interneurons within the cortex leads to 

the release of GABA, which would inhibit glutamatergic neurons and the 

subsequent release of glutamate. Blockade of such NMDA receptors would 

therefore decrease GABAergic inhibitory tone and result in an enhanced activity 

of pyramidal neurons within the cortex [14, 23, 24] leading to downstream 

changes in other transmitters. Indeed, GABAergic interneurons in limbic cortex 

and hippocampus are more sensitive than pyramidal neurons to the action of 

NMDA receptor antagonists [25, 26]. In addition, reduced GABAergic function 

would alter the synchronous firing patterns of cortical neurons, which may 

underlie information-processing deficits present in patients with schizophrenia 

[27]. 

 Various studies have demonstrated that the interactions among 

dopamine, 5-HT and glutamate play an important role in the pathophysiology of 

schizophrenia and that receptors for these transmitters are involved in the 

action of antipsychotic drugs. Increased activity of the mesolimbic dopamine 

system is believed to underlie the positive or psychotic symptoms of 
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schizophrenia and decreased activity within the mesocortical dopamine system 

is believed to reflect negative symptoms and cognitive function also seen in this 

illness [28-32]. All available antipsychotic drugs posses some degree of 

dopamine D2/D3 receptor antagonism, and blockade of dopamine D2/D3 

receptors within the mesolimbic pathway reduces psychotic symptoms [33]. As 

a matter of fact, a good correlation exists between the clinical efficacy of 

antipsychotic drug and their affinity for D2 receptor [34, 35]. Furthermore, most 

antipsychotic drugs display a dose-dependent threshold of D2/D3 receptor 

occupancy for their therapeutic effects [36]. However, the necessity of D2/D3 

receptor blockade for therapeutic action has been challenged recently by the 

finding that drugs that attenuate glutamate release, without acting directly on 

dopamine receptors, are beneficial for positive and negative symptoms [37]. 

 Several atypical antipsychotic drugs, on the other hand, are 

characterized by a lower affinity for D2/D3 and higher affinity for 5-HT2A 

receptors, which has been proposed to confer a superior efficacy and tolerability 

[38, 39]. The lower occupancy of dopamine D2/D3 receptors appears to be 

responsible for causing fewer extrapyramidal side-effects (EPS) [40]. In addition 

to the predominant role of the D2/D3 receptor in the current treatment of 

psychotic symptoms, dopamine D1 receptors have been implicated in 

schizophrenia [41, 42]. This line of evidence has been recently highlighted by 

the finding that cognitive/negative symptoms in schizophrenia are associated 

with a reduction of prefrontal dopamine D1 receptor binding [43]. Some atypical 

antipsychotic drugs may also have affinity for other transmitter receptors such 

as serotonin 5-HT1A, α-adrenergic, histamine H1, and muscarinic receptors, 

which may affect their efficacy and side-effect profile [44, 45]. Thus, there is 

some evidence for the importance of 5-HT1A receptor agonists in certain 

aspects of the pharmacotherapy of schizophrenia [46-49]. Furthermore, 5-HT1A 

receptor agonists have been shown to reduce the incidence of EPS in 

schizophrenia patients treated with haloperidol [50, 51]. With regard to α-

adrenergic mechanisms, many clinically effective antipsychotic drugs (both 

classical and atypical) possess α1-adrenoceptor antagonist properties [44, 52], 

which has been postulated to be clinically relevant [53]. However, although 
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central α1-adrenoceptors may regulate sensorimotor gating altered in 

schizophrenia [54], there are not studies dealing with the occupancy of α1-

adrenoceptors in individuals under antipsychotic treatment. 

 In the animal setting, most studies have shown that atypical, but not 

typical, antipsychotics block the effects of NMDA receptor antagonists on 

prepulse inhibition (PPI) of the startle response [55]. In addition, atypical 

antipsychotic drugs, but not haloperidol, increases extracellular DA 

concentration in the PFC [56, 57] and prevent the brain increase in regional 2-

deoxyglucose uptake induced by ketamine [58]. We have shown recently that 

the local perfusion of antipsychotic drugs decreased extracellular 5-HT in the 

mPFC [59, 60]. Stimulation of 5-HT1A and blockade of 5-HT2A receptors might 

contribute to this effect since both types of compounds were able to prevent the 

increases in 5-HT and glutamate, as well as cognitive deficits induced by NMDA 

receptor antagonists [16, 17, 61, 62]. In contrast, raclopride and eticlopride 

(dopamine D2/D3 antagonists) and SKF 38393 (dopamine D1/D5 agonist) 

prevented the increase of glutamate (but not that of 5-HT) induced by MK-801 

[62]. Furthermore, clozapine and haloperidol attenuated PCP-induced increase 

in cortical glutamate [63], as well as the elevated firing of a population of mPFC 

pyramidal neurons elicited by PCP or MK-801 [64, 65]. Interestingly, clozapine 

exhibited a leveling effect on the firing of pyramidal cells in the mPFC, 

increasing the activity of neurons with low baseline firing rates and decreasing 

the activity of neurons with higher firing rates [64]. This fine-tuning effect might 

contribute to the unique therapeutic efficacy of clozapine in schizophrenia. 

 In a previous study we showed that both clozapine and haloperidol 

blocked the MK-801-induced increase in glutamate in rat mPFC, whereas only 

clozapine was able to block the increased efflux of 5-HT [18]. In addition, we 

also showed that antagonism at dopamine D2 receptors and agonism at 

dopamine D1 receptors resulted in blockade of the effects of MK-801 on mPFC 

glutamate but not 5-HT. In contrast, 5-HT2A and α1-adrenergic receptor 

antagonists, as well as 5-HT1A receptor agonist, were able to prevent the 

increase in 5-HT and glutamate elicited by MK-801 [62]. In the present study we 

set out to replicate such findings using a wider range of concentrations and 
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extend them to other typical (chlorpromazine) and atypical (olanzapine) 

antipsychotic drugs. To this end, intracerebral microdialysis in the mPFC was 

used under the same experimental conditions described previously [18, 63]. 

The choice of prefrontal cortex was accounted for by its pivotal involvement in 

higher brain functions such as executive tasks and cognition [66] known to be 

disrupted in schizophrenia [67] and in animal models [68]. Despite the 

importance of mPFC in the etiology and pharmacotherapy of schizophrenia, it is 

worth noting that the effects of such compounds in other brain regions may also 

be crucial for the treatment of the illness. From a methodological point of view it 

is also important to note that antipsychotic drugs and selective compounds were 

delivered in the mPFC by reverse dialysis. Despite the in vitro affinity (10-8-10-9 

M) of antipsychotics and selective compounds used in the present study for 

serotonergic and adrenergic receptors, the use of concentrations in the 

micromolar range is required in in vivo microdialysis to significantly affect 

neurotransmitter receptors (e.g. [69, 70]). This is due to the fact that effective 

concentration at receptors is limited by the low application rate (in the low 

nmol/h range) and the continuous clearance of the applied drug by the 

cerebrospinal fluid. Moreover, a substantial number of post-synaptic receptors 

in mPFC neurons must be recruited to activate/inhibit the mPFC-raphe circuit 

and elicit changes in mPFC 5-HT release [71, 130]. 

 

IS CORTICAL 5-HT TRANSMISSION RELATED TO “ATYPICALITY”? 

The term “atypical” referred to an antipsychotic drug was first applied to 

clozapine because this drug was devoid of the overt EPS and increased 

prolactin secretion seen in humans treated with neuroleptics. By comparison 

with the pharmacological profile of clozapine, it is considered that atypical 

antipsychotic drugs are relatively more potent serotonin 5-HT2A antagonists 

than dopamine D2 antagonists (see [39] for review). More recently, the multi-

receptor pharmacology of atypical antipsychotics has included other features 

such as serotonin 5-HT1A and dopamine D1 agonism, dopamine D2 partial 

agonism as well as α1-adrenergic antagonism [46, 53, 72, 73]. 
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 The effects of antipsychotic drugs on extracellular 5-HT in the mPFC are 

far from conclusive [18, 61, 74, 75]. In general, both typical and atypical 

antipsychotics seem to decrease or leave unchanged cortical 5-HT although the 

particular effect might depend on the experimental conditions and/or dose of the 

drug. However, there seems to be a concurrence of results showing that 

risperidone increases cortical dialysate 5-HT, an effect which is probably related 

to its antagonistic action at α2-adrenoceptor, and seems to take place at the 

nerve terminal level [74]. In line with this assumption, Hertel and coworkers [76] 

demonstrated that idazoxan, an α2-adrenoceptor antagonist, in combination 

with raclopride (dopamine D2/D3 receptor antagonist), exerted a clozapine-like 

antipsychotic effect on phencyclidine-treated animals. Thus, the role of mPFC 

5-HT in the mechanism of action of atypical antipsychotic drugs appears 

equivocal. Nevertheless, a different issue that has been addressed in the 

present study is the role of cortical 5-HT in the action of antipsychotics in an 

animal model of schizophrenia. 

 Previous studies have demonstrated that NMDA receptor antagonists 

augment the firing rate of putative pyramidal neurons within the mPFC [65, 77, 

78], which results in an increased efflux of glutamate and 5-HT. These effects 

are accounted for by an overstimulation of cortical AMPA-dependent 

glutamatergic transmission because they were abolished by intra-mPFC 

perfusion of an AMPA receptor antagonist [18, 79]. In line with previous 

research [8, 14, 15], MK-801 increases glutamate release onto AMPA/kainate 

receptors leading to an enhanced glutamatergic output from mPFC neurons 

(including those projecting to the dorsal raphe nucleus) thereby increasing 

serotonergic cell firing and cortical 5-HT release. Furthermore, it has been 

shown that blockade of AMPA/kainate receptors in the prefrontal cortex 

inhibited PCP-induced locomotion and stereotypy [80]. The antipsychotic action 

would therefore result from a prevention of the effects resulting from this cortical 

hyperglutamatergia. 

 In an initial study carried out in our lab we showed that pretreatment with 

atypical antipsychotic drugs such as clozapine and olanzapine suppressed the 

increased release of 5-HT in the mPFC elicited by phencyclidine (PCP) and 
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ketamine whereas haloperidol failed to do so [22]. Subsequently we 

demonstrated that clozapine and haloperidol were able to block the increase in 

cortical glutamate produced by MK-801, but only clozapine reduced the 

increase in 5-HT [18]. In addition, the mPFC appeared to be the preferential site 

of action of these drugs inasmuch as their effects were seen after local infusion 

through a dialysis probe. As shown in Fig. (1), this differential action has been 

replicated and confirmed also for chlorpromazine (typical antipsychotic) and 

olanzapine (atypical antipsychotic). The fact that all four antipsychotic drugs 

tested are able to block the effect of MK-801 on extracellular glutamate is in line 

with recent results showing that both clozapine and haloperidol possess the 

ability to markedly inhibit a subset of mPFC neurons [64]. The most prominent 

features of the pharmacological profile shared by these antipsychotics are 

dopamine D2 receptor and α1-adrenoceptor antagonism [44, 45, 52, 81-83]. 

However, since prazosin can also prevent the increase in dialysate 5-HT 

produced by NMDA antagonists ([22]; Fig. (7) of this study), it was suggested 

that glutamatergic transmission in the mPFC is predominantly dependent on 

dopamine D2 receptors, but not on α1-adrenoceptors. Unlike the actions of 

clozapine and olanzapine, the lack of effect of haloperidol and chlorpromazine 

on cortical 5-HT points to a different regulation of the pyramidal cells projecting 

to the dorsal raphe nucleus (DR). Because only 5% of pyramidal neurons in 

layer V of the mPFC project to the dorsal raphe nucleus [84], it is conceivable 

that, under conditions of increased 5-HT and glutamate transmission in the 

mPFC following the administration of NMDA antagonists, blockade of D2 

receptors by antipsychotic drugs might be able to inhibit cortical output 

(blockade of increased glutamate efflux), although sparing mPFC → DR 

projections. An alternative explanation could be that cortico-raphe projecting 

neurons might be inhibited by both typical antipsychotics, but not to the extent 

needed to suppress serotonergic firing distally in the DR and the subsequent 

cortical 5-HT release. On the other hand, we hypothesized that 5-HT 

concentration in the mPFC appears to be under the control of multiple 

monoamine receptors, which is coincident with the multi-receptor profile of 

atypical antipsychotics. 
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EFFECTS OF DOPAMINERGIC COMPOUNDS 

In accord with our hypothesis, we have shown that two different dopamine D2 

receptor antagonists, raclopride and eticlopride, elicited the same effect than 

that of haloperidol and chlorpromazine ([62]; present study). Raclopride binds 

with equal affinity to D2 and D3 receptors and has negligible affinity for D4 

receptors [85], and eticlopride possesses equal selectivity for D2 and D3 

receptors [86], but 10-fold greater affinity than raclopride for both receptors [87]. 

Eticlopride also interacts with D4 receptors [83]. It could be argued that the lack 

of effect of D2/D3 antagonists on cortical 5-HT can be accounted for by the low 

concentration of antagonists used. However, as shown in Fig (2), a higher 

concentration of raclopride (100 µM) produced similar results, i.e. blockade of 

MK-801-induced effects on glutamate but not on 5-HT. Differences in the 

receptor populations present in layer V of the mPFC and the distinct 

pharmacological profile of clozapine, olanzapine, chlorpromazine and 

haloperidol (Table 1), could provide the anatomical substrate for this differential 

effect. Altogether, it appears that serotonergic transmission in the mPFC is 

regulated by the concurrent participation of multiple transmitter receptors, 

whereas glutamatergic transmission is strongly dependent on dopamine D2 

receptor activation. Further evidence of the regulation of glutamate release in 

the mPFC by dopamine D2 receptors is provided by electrophysiological 

studies. Thus, the augmented efflux of dopamine elicited by the blockade of 

NMDA receptors [11, 19, 88] may promote dopamine D2-induced burst firing 

only in a small subset of pyramidal cells of the mPFC [89], possibly in those 

cells enriched in dopamine D2 receptors. However, dopamine D2 receptors are 

located not only in pyramidal cells, but also in GABA interneurons [90-93]. 

Further, tyrosine hydroxylase-positive terminals have been observed in 

apposition with GABA interneurons [94, 95]. Among the different types of 

cortical GABA interneurons, it has been shown that dopamine acts almost 

exclusively on those containing parvalbumin (PV) [92, 96], which target the 

perisomatic compartment of pyramidal cells [97, 98]. In addition, 

immunocytochemistry studies have reported that PV interneurons express both 
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dopamine D1 and D2 receptors [92]. From a physiological viewpoint, dopamine 

exerts a tonic inhibitory action on PV interneurons through D2 receptors [99, 

100]. In addition, evidence from a postmortem study has indicated that, in the 

anterior cingulate cortex of schizophrenics, there is a shift of dopaminergic 

terminals from pyramidal cells to GABA interneurons [101]. This dopamine 

could then act on D2 receptors located in these interneurons thereby reducing 

the release of GABA with the subsequent disinhibition of pyramidal cells. In the 

animal model setting that we used, an excessive release of dopamine following 

MK-801 administration [19] might lead to a further reduction in GABAergic 

inhibition, which would result in an impairment of the intrinsic cortical circuitry. In 

fact, this has been postulated to occur in the brain of schizophrenics [102-104]. 

Dopamine D2 antagonists would dampen the inhibitory action of dopamine 

overflow on GABA interneurons, thus elevating GABA release and reducing 

cortical glutamatergic output induced by MK-801. The relevance of PV 

interneurons in this process is underscored by two facts: 1) in rodents 50% of all 

GABA neurons contain PV [105] and 2) PV neurons are thought to play a 

predominant role in gamma oscillations [106-108]. A subtype of dopamine D2 

receptor that has received attention recently is the D4 receptor. The dopamine 

D4 receptor is of interest because of its localization in limbic structures 

associated with the regulation of mood and cognition, such as cerebral cortex 

and hippocampus [109, 110]. In addition, clozapine and olanzapine have 

significant affinities at the dopamine D4 receptor (Table 1), which supports the 

role of this receptor as a potential target for antipsychotic drugs. For these 

reasons, it was deemed of importance to examine the effects of a dopamine D4 

receptor antagonist (L-745,870) on the MK-801-induced increases in cortical 5-

HT and glutamate. Intracortical pretreatment with L-745,870 prevented the 

effects of MK-801 on glutamate, but not those on 5-HT (Fig (3)). Although there 

is histological evidence of the presence of dopamine D4 receptors in the mPFC 

of rodents, controversy exists as regards to the level of expression [91, 111-

115]. There is consensus, however, that the prefrontal cortex depicts a 

prominent expression of this receptor [91, 110, 114, 115], which is expressed in 

both pyramidal and GABAergic cells [91, 110, 114]. Our results are consistent 
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with a localization of dopamine D4 receptors in GABAergic interneurons 

although it remains to be determined the phenotype of such cells. 

 The regulation of prefrontal function by dopamine involves not only D2, 

but also D1 receptors. In fact, dopamine D1 agonists enhance cortical 

dopaminergic transmission, which is postulated to be good against cognitive 

and negative symptoms [116]. Indeed, the systemic administration of a low 

dose of a dopamine D1 receptor agonist ameliorates cognitive dysfunction 

induced by MK-801 although increases stereotypy and locomotor activity 

(model of psychotic symptoms) at higher doses [117]. Our results show that 

dopamine D1 agonism elicits comparable effects to those of dopamine D2 

antagonists, i.e. a reduction of MK-801-induced increase of cortical glutamate 

[62]. However, when the concentration of the dopamine D1 agonist, SKF-

38393, was increased to 100 µM, the elevation of 5-HT elicited by MK-801 was 

abolished (Fig (4)). However, it remains to be determined the potential clinical 

relevance of this effect. Although dopamine D1 receptors are expressed by 

deep layer cortical pyramidal neurons [93, 118, 119,], they are also localized to 

GABA-containing interneurons [92, 93, 119, 120]. Since the effect of SKF-

38393 is difficult to reconcile with an action on excitatory D1 receptors located 

on pyramidal neurons, a more plausible explanation is that SKF-38393 would 

bind to dopamine D1 receptors of GABAergic neurons, thereby turning on 

GABAergic inhibition, which would block the increase in glutamate efflux 

induced by MK-801. The dopamine D1 receptor family is comprised of two 

subtypes: D1 and D5. Inasmuch as the D1 subtype seems to be predominant in 

cortical PV interneurons [120, 121], it is conceivable that, in the conditions of 

the present study, the blockade of MK-801-induced increase in cortical 

glutamate is accounted for by an action of SKF-38393 on D1 receptors located 

in PV interneurons. However, the blockade of the effects on 5-HT might also 

suggest the presence of D1 receptors in another subpopulation of GABAergic 

interneurons that influence mPFC output to the raphe nuclei (Fig (8)). 

 Altogether our results suggest that D2 antagonists and D1 agonists might 

end up with the same response, i.e. to restore cortical GABA efflux in order to 

prevent an excessive glutamatergic transmission following MK-801 
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administration. Furthermore, our results are also consistent with the proposal 

that D1 receptor activation requires phasic dopamine release whereas D2 

receptors are continuously driven by basal, tonic dopamine release [122]. 

 

EFFECTS OF SEROTONERGIC COMPOUNDS 

In contrast to dopamine D2 receptor antagonists, the selective 5-HT2A 

antagonist, M100907 [123], prevented the increase in 5-HT and glutamate 

elicited by MK-801 in a concentration-dependent manner (Fig (5)). This agrees 

with prior work using a competitive NMDA receptor antagonist [16] and could 

reflect a reduction of a heightened prefrontal output (including that projecting to 

the DR) following MK-801. In fact, at the concentration of 300  µM, M100907 

decreased MK-801-induced 5-HT level below baseline values. Previous work 

from our lab has also shown that 5-HT2A antagonism is able to prevent other 

paradigms of higher serotonergic transmission in the mPFC, such as intra-

mPFC perfusion of S-α-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionic acid 

(S-AMPA), 2,5-dimethoxy-4-iodoamphetamine (DOI) and the α1-adrenoceptor 

antagonist cirazoline [59, 124], as well as thalamic disinhibition [60]. 5-HT2A 

receptors are largely localized to apical dendrites of pyramidal neurons [125, 

126], a cellular zone that receives inputs from different cortical areas, allowing 

integration within cortical layers and between different cortical areas. For this 

reason, 5-HT2A antagonists are in a unique position to compensate for the 

increased cortico-cortical transmission that probably occurs after MK-801 

administration and the pharmacological conditions mentioned above. Although 

there is evidence that 5-HT2A receptors are also present in cortical GABAergic 

interneurons of the rat mPFC [125, 127], our results points to a predominant 

effect of M100907 on the population of receptors located in pyramidal neurons 

following MK-801 administration. 

 Besides 5-HT2A receptor antagonism, 5-HT1A receptor agonism is also 

able to block the increase in 5-HT and glutamate elicited by MK-801 with a 

comparable potency (Fig (6)). Another study has shown that the 5-HT1A 

receptor agonist 8-OH-DPAT also prevents the increase in cortical 5-HT and 
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glutamate evoked by a competitive NMDA antagonist [17]. As for the effects of 

M100907, the reduction of 5-HT is probably caused by a decrease in the activity 

of pyramidal cells projecting to the DR [128, 129], which would ease this 

nucleus from a tonic excitatory input, thereby decreasing the activity of 5-HT 

cells [130]. The 5-HT1A receptor agonist repinotan (BAY x 3702) [131] has 

proved also effective in blocking the increased 5-HT release induced by intra-

mPFC perfusion of S-AMPA, DOI and cirazoline [59, 124], as well as thalamic 

disinhibition [60]. The additional blockade of increased glutamatergic 

transmission suggests that 5-HT1A receptor activation in the mPFC potently 

attenuates the action of agents that enhance the activity of pyramidal neurons, 

an effect shared by several different treatments and involving the stimulation of 

AMPA/kainate receptors in the mPFC [18, 79]. Furthermore, the crucial 

localization of 5-HT1A receptors in the perisomatic domain of cortical pyramidal 

neurons of the rat prefrontal cortex [132] might explain the powerful effects of 5-

HT1A receptor agonists. Both 5-HT2A and 5-HT1A receptors show a ~80% co-

localization in the mPFC [124] with a high level of expression in pyramidal cells 

labeled by vGluT1 [127]. Altogether, this provides the anatomical support for an 

action of serotonergic compounds on pyramidal cells of the mPFC. Although 5-

HT2A and 5-HT1A receptors are also expressed in cortical GABAergic 

interneurons of the rat [125, 127, 133], they do not seem to play a role in the 

control of cortical 5-HT and glutamate in the conditions of the present work. 

 

EFFECTS OF α1-ADRENOCEPTOR ANTAGONISTS 

As for 5-HT2A antagonists and 5-HT1A agonists, the intra-mPFC administration 

of the α1-adrenoceptor antagonist prazosin [134] also blocked the MK-801-

induced increase in 5-HT and glutamate (Fig (7)). Although α1-adrenoceptors 

are largely co-expressed with 5-HT2A receptors (>80%) and are localized to 

both pyramidal and GABAergic cells (N. Santana, G. Mengod and F. Artigas, 

unpublished results) in the mPFC, the effects of prazosin seen in previous [62] 

and the present study are more congruous with a blockade of α1-adrenoceptors 

located on pyramidal neurons, including those in layer V that project to the 
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dorsal raphe nucleus. The mechanism of action of prazosin is most likely similar 

to that of M100907 inasmuch as both 5-HT2A and α1-adrenoceptors are coupled 

to the same intracellular signaling mechanisms (phospholipase C) and mediate 

the excitatory actions of 5-HT and noradrenaline on pyramidal neurons of the 

mPFC [128, 135]. Moreover, the fact that 5-HT2A and α1-adrenoceptors are 

localized to the same cortical areas [136-138] provides a neuroanatomical 

support for the parallel action of 5-HT2A and α1-adrenoceptor antagonists. The 

main difference in the cortical laminar distribution between 5-HT2A and α1-

adrenergic receptors is that the latter are separated in two bands around layer V 

[139, 140]. In line with the present work, previous studies carried out in our 

laboratory have revealed that the perfusion of prazosin in the mPFC prevented 

the increase of 5-HT elicited by the cortical application of cirazoline, DOI and S-

AMPA [60], as well as thalamic disinhibition [60]. Because all these compounds 

do not interact directly with each other’s receptors their effects need to be 

interpreted not at receptorial level, but at cellular (pyramidal) level. This is 

correspondence with the role of pyramidal cells of the mPFC in integrating 

multiple inputs from cortical as well as subcortical areas [141-143]. 

 

IMPLICATIONS FOR ANTIPSYCHOTIC ACTION 

The findings of the present and previous [18, 62] work from our laboratory 

suggest that excessive glutamate transmission in the mPFC (resulting from 

NMDA receptor blockade) may be associated with some positive symptoms of 

schizophrenia, inasmuch as they are better treated by drugs that possess some 

degree of dopamine D2 receptor antagonism (a characteristic of the great 

majority of marketed antipsychotic drugs). In contrast, impairment of 

serotonergic pathways in the mPFC might rather be related to negative 

symptoms and/or cognitive deficits, conditions for which atypical antipsychotic 

drugs (e.g. clozapine and olanzapine) seem to display superior therapeutic 

efficacy. However, several recent studies have somehow challenged this 

purported higher efficacy in the clinic. Thus, the Clinical Antipsychotic Trials of 

Intervention Effectiveness (CATIE) study has shown that the typical drug 
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perphenazine is as effective as other atypical drugs in terms of PANSS scores. 

However, olanzapine was the medication that patients stayed on the longest in 

the trial [144]. In similar terms, the Cost Utility of the Latest Antipsychotics in 

Severe Schizophrenia (CUtLASS) study also concluded that second-generation 

(atypical) antipsychotics do not offer significant clinical benefits over first-

generation (typical) drugs when prescribed to patients with schizophrenia [145]. 

Altogether these studies illustrate the difficulty of translating from 

experimentally-observable pharmacological differences in the preclinical setting 

to therapeutic advantages. 

Thus, there is a clear need for targeting different transmitter receptors in order 

to achieve better treatment (as well as a lower side-effect profile) of 

schizophrenia. Pharmacological models of schizophrenia based on NMDA 

antagonism, dopaminergic stimulants or serotonergic agonists point to an 

exacerbated glutamatergic transmission, at least in the mPFC. Our results 

suggest that, antagonism at 5-HT2A and α1-adrenergic receptors, as well as 

agonism at 5-HT1A receptors, are able to prevent the excessive glutamatergic 

transmission in the mPFC produced by such different conditions. In line with 

these results, it has been shown that 5-HT and selective receptor agonists 

modulate the excitability of cortical neurons and their discharge rate through the 

activation of several receptor subtypes: namely 5-HT1A, 5-HT1B, 5-HT2A/2C and 

5-HT3 [128, 146-152]. Atypical antipsychotic drugs that exhibit 5-HT2A 

antagonism and/or 5-HT1A agonism, such as clozapine, increase dopamine 

efflux in the mPFC of rodents [57, 153-157], which is potentially involved in the 

improvement of negative symptoms and cognitive dysfunction in schizophrenia 

[154, 155, 158, 159]. This effect appears to be dependent on the presence of 

intact 5-HT1A receptors [57, 157]. Given that some of these drugs (e.g. 

olanzapine) do not depict affinity for 5-HT1A receptors (Table 1), it would seem 

that the 5-HT1A receptor has a permissive role in this action, rather than being 

directly responsible. However, the increase in dopamine efflux produced by 

atypical antipsychotic drugs, including olanzapine, is inhibited by the 5-HT1A 

receptor antagonist WAY 100635 [155] and absent in 5-HT1A receptor knockout 

mice [57], which suggests a pivotal role for 5-HT1A agonism in some of the key 
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properties desired for novel antipsychotic drugs. This concept is supported by 

clinical trials with partial 5-HT1A receptor agonists, which report the ability of 

these compounds not only to reduce the incidence of EPS [46] but also to 

enhance some domains of cognitive function [47]. However, inconsistent results 

have been found depending on the antipsychotic drug and the 5-HT1A receptor 

agonist used (reviewed in [160]). 

 With regard to α1-adrenoceptors, preclinical studies have revealed that 

the blockade of α1-adrenoceptors by prazosin potentiated the antipsychotic-like 

effect of dopamine D2 receptor antagonists [161]. In addition, all antipsychotic 

drugs used in this study display high in vitro affinity for α1-adrenoceptors (Table 

1), which suggests a potential antipsychotic role of α1-adrenoceptor antagonism 

in the pharmacotherapy of schizophrenia. However, the use of drugs that 

possess a high α1-adrenoceptor antagonism in vivo is limited because their 

cardiovascular side-effects (hypotension, arrhythmia). 

 In summary, the intra-mPFC administration of M100907, repinotan and 

prazosin prevents MK-801-induced increase in 5-HT and glutamate, effects that 

are comparable to those obtained with clozapine and olanzapine [62; present 

study], and can be associated to a direct reduction the excitability of a 

subpopulation of pyramidal neurons in the mPFC (Fig (8)). Thus, it is possible 

that 5-HT2A and α1-adrenergic receptor antagonism, as well as 5-HT1A receptor 

agonism, may relate to a better treatment of most symptoms of schizophrenia. 

In fact, preclinical studies have shown that 5-HT2A antagonists and 5-HT1A 

agonists can alleviate cognitive deficits induced by NMDA receptor antagonists 

[61]. Because each of these receptor components do not confer antipsychotic 

properties individually, it is conceivable that a combined effect is necessary to 

achieve this goal. 

 In a recent work, Homayoun and Moghaddam demonstrated that 

clozapine has the unique feature of increasing the activity of putative pyramidal 

neurons with low baseline firing rates and decreasing the activity of neurons 

with higher firing rates in prefrontal cortex [64]. Given that antagonists at D2/D3, 

D4, 5-HT2A receptors and a dopamine D1 receptor antagonist are all able to 
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increase basal extracellular glutamate on their own (Table 2), but they prevent 

the increase of glutamate release evoked by MK-801, the dual effect of 

clozapine can result from its interaction with such monoamine receptors, and 

this might be related to the pro-cognitive effects of the drug. It would be 

interesting to examine whether this effect of clozapine is shared by other 

atypical antipsychotic drugs with a similar pharmacological profile. 

 Unlike serotonergic and adrenergic compounds, the effects of 

dopaminergic compounds have been attributed to an increase in cortical 

inhibition responsible for a reduction of an excessive glutamatergic stimulation 

following NMDA antagonism ([62]; present study). This implies the localization 

of dopamine D1/D5, D2/D3 and D4 receptors in a subpopulation of GABA 

interneurons (possibly those containing PV). Interestingly, the finding that a high 

concentration of the SKF 38393 is also able to prevent the MK-801-induced 

increase of cortical 5-HT seems to suggest that D1/D5 receptors are also located 

in a different set of GABA interneurons, perhaps those containing 

cholecystokinin [162, 163]. Clozapine has been shown to enhance dopamine 

D1 receptor-mediated neurotransmission [72, 164]. Therefore, the pro-cognitive 

action of clozapine could also result from its action on dopamine D1 receptors. 

Alternatively, it has also been suggested that the action of clozapine could 

involve potentiation of NMDA transmission (see [165] for review). Our results 

support a similar view for olanzapine. On the other hand, blockade of dopamine 

D2/D3 receptors may be in the front line of the pharmacological treatment of 

schizophrenia because dopamine D2/D3 antagonists would increase GABA 

inhibition directly, thus restoring cortical synchrony. 

The conclusions raised in previous [62] and the present study are 

established as a result of the analogies present in the action of antipsychotic 

drugs and selective agonists and antagonists for monoaminergic receptors. 

However, it remains to be determined if different effects may emerge from a 

combination of multiple interactions among these receptors. Furthermore, as a 

general rule for psychiatric illnesses, caution must be taken in extrapolating the 

results obtained in an animal model to a clinical setting. 
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FUTURE TRENDS 

From the beginning of pharmacotherapy of schizophrenia, medicine cases have 

been filled with drugs that shared the characteristic of being dopamine D2 

receptor antagonists. First generation typical antipsychotics like haloperidol and 

chlorpromazine potently block dopamine D2/D3/D4 and α1-adrenergic receptors. 

The blockade of dopamine D2 receptors in the PFC and the nucleus 

accumbens appears to be beneficial for psychotic symptoms (delusions, 

hallucinations). However, the same action in other areas of the brain can cause 

severe EPS and hyperprolactinemia [33]. Second generation atypical 

antipsychotic drugs like clozapine and olanzapine keep some degree of 

dopamine D2/D3/D4 antagonism, but they display a higher antagonism at 5-

HT2A/2C receptors. These features seem to be more effective for negative 

symptoms and cognitive deficits although some side-effects (weight gain, 

impairment of glucose and lipid metabolism) may appear [166]. However, this 

group of drugs is not homogeneous, and a recent meta-analysis of randomized 

controlled trials has shown that only four of these second-generation drugs 

(amisulpride, clozapine, olanzapine and risperidone) were better than first-

generation antipsychotic drugs for overall efficacy [167]. The other second-

generation drugs (quetiapine, sertindole, ziprasidone, zotepine) were not more 

efficacious than the first-generation drugs, even for negative symptoms. 

Therefore, efficacy on negative symptoms does not seem to be a core 

component of atypicality. Third generation antipsychotic drugs like aripiprazole 

and bifeprunox improve both positive and negative symptoms of schizophrenia 

without producing EPS or increases in serum prolactin [168, 169]. The unifying 

features of this third generation antipsychotics are the association of D2/D3 

interaction (antagonism or partial agonism) with 5-HT1A receptor activation 

without the requirement for 5-HT2A receptor blockade. More recently it has been 

shown that drugs that interact with mGluR also have potential for the treatment 

of schizophrenia [37, 170, 171]. However, a significant proportion of patients still 

do not experience complete remission of their positive symptoms and 

negative/cognitive symptoms remain poorly treated. In recent years, research 
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and development efforts have sought novel "atypical" antipsychotic drugs that 

would offer the therapeutic advantages of clozapine without the associated risk 

of side effects. 

 In the search for reliable biomarkers to be used in R+D of newer drugs, 

our results first suggest that the blockade of an exacerbated 5-HT release in the 

mPFC induced by NMDA antagonists can be a useful biochemical marker of 

“atypicality” of antipsychotic drugs. Although this has been established for 

clozapine and olanzapine (drugs that display a similar pharmacological profile), 

further research is needed to determine whether this is a distinct feature of 

other second generation antipsychotic drugs and, most interestingly, if this 

holds also true for third generation antipsychotics (which represents receptor 

mechanisms that include dopamine D2/D3 receptor partial agonism). 

 GABAergic interneurons in prefrontal cortex play a critical role in cortical 

circuits by providing feedforward and feedback inhibition and synchronizing 

neuronal activity [172, 173]. In this regard, we also propose that blockade of 

dopamine D2/D3/D4 as well as dopamine D1 agonism in the mPFC may lead to a 

restoration of cortical GABA inhibition and synchrony alleged to be impaired in 

schizophrenia [102-104, 174]. Further support for this hypothesis has been 

obtained recently in our lab showing that both clozapine and haloperidol have 

the ability of reverse the effects of PCP on pyramidal cell firing and cortical 

synchronization [65]. However, it is also possible that the same effect is caused 

by different mechanisms, i.e. blockade of dopamine D2/D3/D4 receptors 

(haloperidol) or 5-HT2A receptors (clozapine). Further research is needed to 

verify such different alternatives. 

 On the other hand, antagonism at 5-HT2A and α1-adrenergic receptors, 

as well as agonism at 5-HT1A receptors may also be helpful by suppressing an 

excessive stimulation of pyramidal cells. One of the most important issues in 

this field is the fact that all these monoamine receptors implicated in the 

pharmacological treatment of schizophrenia are present in both pyramidal cells 

and GABA interneurons in the mPFC [93, 127]. Therefore, the question arises 

as to what factors determine the binding of a drug predominantly to one of these 
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cellular populations. With this in mind, newer antipsychotics would target 

receptors responsible for stimulating cortical GABA inhibition and diminishing 

excessive excitability of pyramidal cells without the undesired effects of similar 

actions in other areas of the brain. In addition, the regulatory changes of the 

complex formed by 5-HT2A and mGluR2 receptors presumed to be involved in 

the altered cortical processes [175] also suggests that this receptor complex is 

a promising new target for the treatment of psychosis. 
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Table 1. In vitro binding affinities of the four antipsychotics used in the present 

study, expressed in Ki values (nM). 

Receptor Clozapine Olanzapine Haloperidol Chlorpromazine

D1 85 31 210 56 

D2 125 11 1 2 

D3 473 27 2 9 

D4 35 21 5 12 

5-HT1A 770 >10,000 2,600 116* 

5-HT2A 12 2 78 2 

5-HT2C 8 11 1,500 25 

α1-adrenergic 7 7 6 1 

H1 histamine 6 7 >730 9 

Muscarinic 2 2 >1,500 60 

 

Data taken from references [44, 45, 52, 81-83]. 

*Data from human cloned 5-HT1A receptors. 

 

 

 

 

 

 

 

 



 

 

Table 2. Changes in extracellular 5-HT and glutamate in the mPFC as a result 

of the action of intra-mPFC administration of drugs on different monoamine 

receptors. (=) unchanged, (↑) increase and (↓) decrease. 

 

Receptor action  Changes in 5-HT  Changes in glutamate 

 

D2/D3 antagonism   =    ↑ 

D4 antagonism   =    ↑ 

D1 agonism     ↓    ↑ 

5-HT1A agonism   ↓    = 

5-HT2A antagonism   ↓    ↑ 

α1-adrenoceptor antagonism ↓    = 

 

Data taken from reference [60, 62] and X. López-Gil, F. Artigas and A. Adell 

(unpublished results). 
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FIGURE LEGENDS 
 

Figure 1. Effects of the intra-mPFC perfusion (line) of 300 µM of clozapine 

(CLZ), olanzapine (OLZ), chlorpromazine (CPZ) and haloperidol (HAL) on the 

efflux of 5-HT (A) and glutamate (B) in the mPFC elicited by MK-801 (1 mg/kg, 

i.p.; arrow). Data (mean ± SEM) are expressed as percentage changes of the 

four basal predrug values. Number of animals is given in parentheses. The 

control group received an injection of saline and, for the sake of clarity, is 

depicted as a dotted line. Analysis of variance (ANOVA) shows that all four 

antipsychotic drugs block the increase in glutamate produced by MK-801, but 

only clozapine and olanzapine are able to block the effect of MK-801 on 5-HT. 

 

Figure 2. Effects of the perfusion of the dopamine D2/D3 antagonist raclopride 

(RAC, 10, 30 and 100 µM) on the efflux of 5-HT (A) and glutamate (B) in the 

mPFC elicited by MK-801 (1 mg/kg, i.p.; arrow). Data are based on integrated 

area under the curve (AUC) analysis of 4-h perfusion, and expressed as the 

percentage change from the control group depicted as open bar. *p < 0.01 vs. 

control group and §p < 0.01 vs. MK-801 alone (Newman-Keuls test following 

ANOVA). 

 

Figure 3. Effects of the perfusion of the selective dopamine D4 antagonist L-

745,870 (L, 10 and 30 µM) on the efflux of 5-HT (A) and glutamate (B) in the 

mPFC elicited by MK-801 (1 mg/kg, i.p.; arrow). Data are based on integrated 

area under the curve (AUC) analysis of 4-h perfusion, and expressed as the 

percentage change from the control group depicted as open bar. *p < 0.01 vs. 

control group and §p < 0.01 vs. MK-801 alone (Newman-Keuls test following 

ANOVA). 

 

Figure 4. Effects of the perfusion of the dopamine D1/D5 agonist SKF 38393 

(SKF, 1, 10 and 100 µM) on the efflux of 5-HT (A) and glutamate (B) in the 

mPFC elicited by MK-801 (1 mg/kg, i.p.; arrow). Data are based on integrated 

area under the curve (AUC) analysis of 4-h perfusion, and expressed as the 

percentage change from the control group depicted as open bar. *p < 0.01 vs. 
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control group and §p < 0.01 vs. MK-801 alone (Newman-Keuls test following 

ANOVA). 

 

Figure 5. Effects of the perfusion of the selective 5-HT2A antagonist M100907 

(M, 1, 10 and 300 µM) on the efflux of 5-HT (A) and glutamate (B) in the mPFC 

elicited by MK-801 (1 mg/kg, i.p.; arrow). Data are based on integrated area 

under the curve (AUC) analysis of 4-h perfusion, and expressed as the 

percentage change from the control group depicted as open bar. *p < 0.01 vs. 

control group and §p < 0.01 vs. MK-801 alone (Newman-Keuls test following 

ANOVA). 

 

Figure 6. Effects of the perfusion of the selective 5-HT1A agonist repinotan 

(BAY x 3702; BAY, 1 and 30 µM) on the efflux of 5-HT (A) and glutamate (B) in 

the mPFC elicited by MK-801 (1 mg/kg, i.p.; arrow). Data are based on 

integrated area under the curve (AUC) analysis of 4-h perfusion, and expressed 

as the percentage change from the control group depicted as open bar. *p < 

0.01 vs. control group and §p < 0.01 vs. MK-801 alone (Newman-Keuls test 

following ANOVA). Data taken and redrawn from reference [62], with 

permission. 

 

Figure 7. Effects of the perfusion of the selective α1-adrenoceptor antagonist 

prazosin (PRZ, 1, 10 and 100 µM) on the efflux of 5-HT (A) and glutamate (B) in 

the mPFC elicited by MK-801 (1 mg/kg, i.p.; arrow). Data are based on 

integrated area under the curve (AUC) analysis of 4-h perfusion, and expressed 

as the percentage change from the control group depicted as open bar. *p < 

0.01 vs. control group and §p < 0.01 vs. MK-801 alone (Newman-Keuls test 

following ANOVA). 

 

Figure 8. The diagram illustrates the functional relationships between the 

mPFC and its dopaminergic and serotonergic projections from the VTA and the 

DR, respectively. Although all monoaminergic receptors depicted in this figure 

are present in both pyramidal cells and GABAergic interneurons, it is only 
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represented the localization that conforms to the results obtained in the present 

study. 
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