34 research outputs found

    Characterization of carbonic anhydrase isozyme specific inhibition by sulfamated 2-ethylestra compounds

    Get PDF
    Sulfamated 2-ethylestra compounds have demonstrated strong anticancer activity, high bioavailability and an ability to bypass liver metabolism by reversibly binding carbonic anhydrase (CA) II in erythrocytes. Another CA isoform, CA IX, is overexpressed in many cancers. The CA domain of CA IX is oriented extracellularly, which may permit targeting inhibitors to tumors. Presented here is the characterization of three 2-ethylestra compounds bound to both CA II and a CA IX mimic protein. Inhibition by 18O exchange showed that compound 16 demonstrated an approximately 12-fold higher affinity for CA II over CA IX mimic. Structurally, compounds 15 and 16 showed alternate binding modes between CA II and CA IX mimic, apparently due to a water-mediated hydrogen bond to the isozyme-specific residue 67. Though the specificity was demonstrated for CA II over CA IX, this study reveals insights that may be key to developing isozyme specific CA inhibitors for novel anticancer therapies.This work was supported by NIH Grant GM25154 and by grants from the Medical Research Council of South Africa (AG374, AK076), the Cancer Association of South Africa (AK246), the Struwig-Germeshuysen Cancer Research Trust of South Africa (AJ038) and RESCOM University of Pretoria (A0R984).http://www.benthamscience.com/lddd/nf201

    High-resolution structure of human carbonic anhydrase II complexed with acetazolamide reveals insights into inhibitor drug design

    No full text
    The crystal structure of human carbonic anhydrase II (CA II) complexed with acetazolamide (AZM) has been determined at 1.1 Å resolution. The co-binding of AZM and glycerol in the active site demonstrate that an isozyme specific CA inhibitor may be developed

    Characterization of Carbonic Anhydrase Isozyme Specific Inhibition by Sulfamated 2-Ethylestra Compounds

    No full text
    Sulfamated 2-ethylestra compounds have demonstrated strong anticancer activity, high bioavailability and an ability to bypass liver metabolism by reversibly binding carbonic anhydrase (CA) II in erythrocytes. Another CA isoform, CA IX, is overexpressed in many cancers. The CA domain of CA IX is oriented extracellularly, which may permit targeting inhibitors to tumors. Presented here is the characterization of three 2-ethylestra compounds bound to both CA II and a CA IX mimic protein. Inhibition by 18O exchange showed that compound 16 demonstrated an approximately 12-fold higher affinity for CA II over CA IX mimic. Structurally, compounds 15 and 16 showed alternate binding modes between CA II and CA IX mimic, apparently due to a water-mediated hydrogen bond to the isozyme-specific residue 67. Though the specificity was demonstrated for CA II over CA IX, this study reveals insights that may be key to developing isozyme specific CA inhibitors for novel anticancer therapies.This work was supported by NIH Grant GM25154 and by grants from the Medical Research Council of South Africa (AG374, AK076), the Cancer Association of South Africa (AK246), the Struwig-Germeshuysen Cancer Research Trust of South Africa (AJ038) and RESCOM University of Pretoria (A0R984).http://www.benthamscience.com/lddd/nf201
    corecore