5 research outputs found

    Finite-time stability results for fractional damped dynamical systems with time delays

    Get PDF
    This paper is explored with the stability procedure for linear nonautonomous multiterm fractional damped systems involving time delay. Finite-time stability (FTS) criteria have been developed based on the extended form of Gronwall inequality. Also, the result is deduced to a linear autonomous case. Two examples of applications of stability analysis in numerical formulation are described showing the expertise of theoretical prediction

    Controllability of nonlinear higher-order fractional damped stochastic systems involving multiple delays

    Get PDF
    This paper is concerned with the controllability problem for higher-order fractional damped stochastic systems with multiple delays, which involves fractional Caputo derivatives of any different orders. In the process of proof, we have proposed the controllability of considered linear system by establishing a controllability Grammian matrix and employing a control function. Sufficient conditions for the considered nonlinear system concerned to be controllable have been derived by constructing a proper control function and utilizing the Banach fixed point theorem with Burkholder–Davis–Gundy’s inequality. Finally, two examples are provided to emphasize the applicability of the derived results

    Backstepping Synthesis for Feedback Control of First-Order Hyperbolic PDEs with Spatial-Temporal Actuation

    Get PDF
    This paper deals with the stabilization problem of first-order hyperbolic partial differential equations (PDEs) with spatial-temporal actuation over the full physical domains. We assume that the interior actuator can be decomposed into a product of spatial and temporal components, where the spatial component satisfies a specific ordinary differential equation (ODE). A Volterra integral transformation is used to convert the original system into a simple target system using the backstepping-like procedure. Unlike the classical backstepping techniques for boundary control problems of PDEs, the internal actuation can not eliminate the residual term that causes the instability of the open-loop system. Thus, an additional differential transformation is introduced to transfer the input from the interior of the domain onto the boundary. Then, a feedback control law is designed using the classic backstepping technique which can stabilize the first-order hyperbolic PDE system in a finite time, which can be proved by using the semigroup arguments. The effectiveness of the design is illustrated with some numerical simulations

    Theory and simulation studies of effective interactions, phase behavior and morphology in polymer nanocomposites

    No full text
    corecore