10 research outputs found

    Improved graph model for interdependent gas and electricity critical infrastructures

    Get PDF
    Interdependence between gas and electricity transmission networks is a subject of concern due to the expanding use of gas for electricity generation in combined-cycle power plants around the world. This paper proposes a novel and much more accurate representation of natural gas and electrical networks based on graph theory, which includes all the assets of both systems and their couplings and offers a more realistic topological model of the two coupled networks. The representation is proposed as a scale-free graph and is mathematically validated in test networks, finding that the representations maintain the same characteristics of traditional graphs, but with more topological detail of the infrastructures

    Analytical design methodology for wind power permanent magnet synchronous generators

    Get PDF
    In this paper a novel analytical design methodology for wind power permanent magnet synchronous generators is presented. This kind of electric generator plays a major role in small-scale wind energy conversion systems up to 10 kW. The proposed diameter-cubed sizing equation is based both on the generator requirements, imposed by the application, and the design parameters that rely on the designer criteria. The magnetic field waveforms of both the permanent magnets field and the armature field are considered from the first moment through the winding factors, as well as the slots effects given by the Carter factor. The analytical model of the permanent magnet synchronous generator is validated with the finite element method, showing good agreement, both with no load and under load. As the generator is unsaturated, the main source of divergence between the analytical and the finite element model are the iron losses, due to the nonuniform magnetic field distribution

    Evaluation of a Thermoelectric Generation system based on Differential-Power Processing architecture under non-uniform temperature conditions

    Get PDF
    This paper presents a Differential Power Processing (DPP) architecture applied to series-connected thermoelectric generators (TEG). Currently, thermoelectric technology is being considered as a promising power generation technology that can be used to recover waste heat energy. Thus, a thermoelectric generation system is studied under non-uniform temperature conditions in multiple TEG devices. The main objective is to allow each thermoelectric sub-module to reach its maximum power point more quickly. The purpose has been to improve the maximum power point tracking (MPPT) in each sub-module, thus it is possible to increase the efficiency with respect to the traditional method based on a global MPPT. Differential Power converters have been implemented in each TEG sub-module to provide an effective solution and mitigate the impact of the mismatch in the power obtained. The DPP architecture consists of a small micro-converter, at the submodular level, applied to the thermoelectric cell. The control algorithm is oriented to polarize each TEG device at its optimal point, which allows us an active balancing among the different TEG sub-modules regardless of the operating temperature. Matlab-Simulink has been the software used to develop the TEG module-Array

    Generalized discontinuous PWM strategy applied to a grid-connected modular multilevel converter

    Get PDF
    This paper presents a new PWM strategy for the control of active and reactive power flow, applied to a three-phase power inverter connected to a microgrid. Power quality and reactive compensation are essential in the integration of renewable energy sources in small grids (stand-alone mode or connected to the utility grid). The control algorithm of the grid-connected system is applied for voltage control. This technique provides independent control of the active and reactive power flow in the utility grid while maintaining constant the DC-link voltage. As a novelty, a Generalized Discontinuous PWM technique is implemented in the control algorithm of the grid-connected converter. Losses in the converter are reduced while the efficiency of the equipment is increased. As a technological innovation, in addition to the power flow control technique, a modular multilevel converter (MMC) is introduced. The main purpose of the system is to improve voltage unbalance and harmonic compensation in stand-alone grids. Some advantages of the model developed here include the cellular concept, easy thermal design, increased system efficiency and improvement in the system expansion capacity. The simulation model has been developed and tested using MATLAB/Simulink software

    Comparison of lead-acid and li-ion batteries lifetime prediction models in stand-alone photovoltaic systems

    Get PDF
    Several models for estimating the lifetimes of lead-acid and Li-ion (LiFePO4 ) batteries are analyzed and applied to a photovoltaic (PV)-battery standalone system. This kind of system usually includes a battery bank sized for 2.5 autonomy days or more. The results obtained by each model in different locations with very different average temperatures are compared. Two different locations have been considered: the Pyrenees mountains in Spain and Tindouf in Argelia. Classical battery aging models (equivalent full cycles model and rainflow cycle count model) generally used by researchers and software tools are not adequate as they overestimate the battery life in all cases. For OPzS lead-acid batteries, an advanced weighted Ah-throughput model is necessary to correctly estimate its lifetime, obtaining a battery life of roughly 12 years for the Pyrenees and around 5 years for the case Tindouf. For Li-ion batteries, both the cycle and calendar aging must be considered, obtaining more than 20 years of battery life estimation for the Pyrenees and 13 years for Tindouf. In the cases studied, the lifetime of LiFePO4 batteries is around two times the OPzS lifetime. As nowadays the cost of LiFePO4 batteries is around two times the OPzS ones, Li-ion batteries can be competitive with OPzS batteries in PV-battery standalone systems

    Effect of cloud transits in a stand-alone solar photovoltaic water pumping system

    Get PDF
    This paper discusses the effects of cloud transit on a stand-alone direct solar photovoltaic water pumping system for irrigation and farms. In this way, its impact is studied, applying a possible classification based on its incidence and effects on the system. For this, the information provided by the data loggers of different photovoltaic installations has been analyzed and in turn compared with the data obtained in the reference installation. In addition, the Matlab-Simulink simulation model used is described. Different simulations have been developed to verify the basic characteristics of the proposed system. In this way, it is possible to check the advantages and drawbacks of the direct water pumping in irrigation applications. At the same time, the system parameters can be easily modified to meet the requirements of different water flow capacities. Also, the water hammer effect and the cavitation phenomenon in the water pump are described. Finally, the simulation results obtained as well as their conclusions are presented

    Vulnerability and Resilience Assessment of Power Systems: From Deterioration to Recovery via a Topological Model based on Graph Theory

    Get PDF
    Traditionally, vulnerability is the level of degradation caused by failures or disturbances, and resilience is the ability to recover after a high-impact event. This paper presents a topological procedure based on graph theory to evaluate the vulnerability and resilience of power grids. A cascading failures model is developed by eliminating lines both deliberately and randomly, and four restoration strategies inspired by the network approach are proposed. In the two cases, the degradation and recovery of the electrical infrastructure are quantified through four centrality measures. Here, an index called flow-capacity is proposed to measure the level of network overload during the iterative processes. The developed sequential framework was tested on a graph of 600 nodes and 1196 edges built from the 400 kV high-voltage power system in Spain. The conclusions obtained show that the statistical graph indices measure different topological aspects of the network, so it is essential to combine the results to obtain a broader view of the structural behaviour of the infrastructure

    Modeling of a stand-alone solar photovoltaic water pumping system for irrigation

    Get PDF
    Solar photovoltaic water pumping systems have been research topics in recent decades. The purpose was to develop much more profitable and efficient systems to meet the needs of pumping water for livestock and irrigation. This paper describes the design of a stand-alone photovoltaic water pumping system. A Boost converter is used to apply the Maximum Power Point Tracking (MPPT) algorithm. Similarly, a three-phase voltage source converter (VSC) is used to supply the asynchronous motor. The installation must provide a continuous water flow during the irrigation interval. It has been verified that in adverse weather conditions (cloud transits or partly cloudy) it is necessary to incorporate a decentralized-hybrid energy storage system (based on batteries or ultracapacitors), or excessively oversize the standalone photovoltaic system, to supply the water pump. The model has been simulated in Matlab-Simulink. In this way, different simulations have been developed to verify the basic characteristics of the proposed system. The results of the simulated model and the conclusions obtained are also presented in this paper

    Analysis of Li-ion battery degradation using self-organizing maps

    Get PDF
    This paper proposes a new methodology to identify the different degradation processes of Li-Ion battery cells. The goal of this study is to determine if different degradation factors can be separated by waveform analysis from aged cells with similar remaining capacity. In contrast to other works, the proposed method identifies the past operating conditions in the cell, regardless of the actual State of Health. The methodology is based on a data-driven approach by using a SOM (Self-organizing map), an unsupervised neural network. To verify the hypothesis a SOM has been trained with laboratory data from whole data cycles, to classify cells concerning their degradation path and according to their discharge voltage patterns. Additionally, this new methodology based on the SOM allows discriminating groups of cells with different cycling conditions (based on depth of discharge, ambient temperature and discharge current). This research line is very promising for classification of used cells, not only depending on their current static parameters (capacity, impedance), but also the battery use in their past life. This will allow making predictions of the Remaining Useful Life (RUL) of a battery with greater precision

    Daily operation optimisation of hybrid stand-alone system by model predictive control considering ageing model

    No full text
    This article presents a method for optimising the daily operation (minimising the total operating cost) of a hybrid photovoltaic-wind-diesel-battery system using model predictive control. The model uses actual weather forecasts of hourly values of wind speed, irradiation, temperature and load. Five control variables are optimised, and thus their optimal set points values determine the optimal control strategy for each day. This involves the use of an accurate model for estimating the degradation of the batteries by considering the capacity loss due to corrosion and degradation. The model considers the extra costs of maintaining and replacing the diesel generator due to running out of its optimal conditions. The optimisation is carried out by means of genetic algorithms. An example of application compares the total operating cost obtained using the optimal control strategy for each day with the cost of using the optimal control strategy found for the whole year, obtaining savings of up to 7.8%. Also the comparison with the cost of using the load following control strategy is analysed, obtaining savings of up to 37.7%. © 2016 Elsevier Lt
    corecore