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Abstract— This paper proposes a new methodology to 
identify the different degradation processes of Li-Ion battery 
cells. The goal of this study is to determine if different 
degradation factors can be separated by waveform analysis 
from aged cells with similar remaining capacity. In contrast to 
other works, the proposed method identifies the past operating 
conditions in the cell, regardless of the actual State of Health. 
The methodology is based on a data-driven approach by using a 
SOM (Self-organizing map), an unsupervised neural network. 
To verify the hypothesis a SOM has been trained with 
laboratory data from whole data cycles, to classify cells 
concerning their degradation path and according to their 
discharge voltage patterns.   Additionally, this new methodology 
based on the SOM allows discriminating groups of cells with 
different cycling conditions (based on depth of discharge, 
ambient temperature and discharge current). 

This research line is very promising for classification of used 
cells, not only depending on their current static parameters 
(capacity, impedance), but also the battery use in their past life. 
This will allow making predictions of the Remaining Useful Life 
(RUL) of a battery with greater precision. 

Keywords— Neural networks, Self-organizing maps (SOM), 
batteries, battery degradation, Remaining useful life (RUL). 

I. INTRODUCTION 
Nowadays, the number of devices and systems that require 

autonomous power (smartphones, sensor networks, electric 
vehicles, photovoltaic generation systems, off-grid 
installations) is constantly growing. In this context, it is well-
known the importance of the prediction of the state and how 
batteries age. Batteries degrade due to a large number of 
factors, such as temperature, charge and discharge currents, 
range of working voltages, and even the different applications 
for which they are used. Due to this degradation, the behavior 
of the same cell varies in time, reducing its capacity, 
increasing its internal resistance, but also changing its voltage-
current behavior in the same application. 

In this area, there are different approaches to parameterize 
the aging of cells. For instance, there is a large scope of study 
of the chemistries of each cell, in order to understand the 
degradation processes that take place  (i.e [1], [2]). 

 
Fig. 1 SoH comparison in battery cycling for two different conditions. 

The classical point of view suggests metrics based on 
characteristics of models for each of the chemical [3]. The 
most common metric to define the state of a battery is the State 
of Health (SoH), which yields a percentage based on a 
quotient for several of the model characteristics (Capacities, 
impedances and so on). A variety of techniques are listed in 
[4], [5]. However, this approach to battery aging does not 
takes into account neither non-linearities nor small differences 
between equally manufactured cells and the cells' 
composition. Two cells might have the same SoH at certain 
moments of their useful life, but being a multidimensional 
problem, due to their different applications, discharge 
currents, temperatures or depth of discharge, they can have 
different aging graphs (Fig. 1). 

Another interesting metric is the Remaining Useful Life 
(RUL). This measure combines SoH with consumption 
predictions for an application to determine how long a battery 
can continue to be used in that specific application. The 
definitions for this metric can be consulted in [6]–[9]. 

This paper presents the study of battery aging by applying 
pattern recognition and exploratory analysis techniques to 
data of several cells with different uses. Our main goal is to 
classify cells according to the purpose they have served in 
their past cycles, so that a prediction of the remaining useful 
life can be given more realistically than with currently used 
methods. To this end, an unsupervised classifier based on the 
neural network algorithm Self-organized Maps (SOM) has 
been used. 
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Fig. 2 Discharge voltage for 4 different DoD levels 

 
Fig. 3 Voltage and current on charge process 

In Section II the database used is presented, the SOM 
algorithm is explained, and the data groups used on our work 
are defined. Results are shown and discussed in Section III. 
Section IV presents the conclusions and establishes future 
work to be conducted. 

II. METHODOLOGY 

A. Database 

A group of 34 Li-ion 2 Ah 18650 batteries have been 
selected. The batteries were cycled by NASA Ames 
Prognostics Center of Excellence (PCoE) ([7], [10]). They 
were cycled until a reduction of 20-30 % on the End of Life 
(EoL) was reached (criterion commonly used in these 
studies). Charge profiles are similar for all cells, with a 
constant current (CC) phase at 1.5 A until reaching 4.2 V, and 
a constant voltage (CV) phase until current drops to 20 mA, 
Fig. 3. Discharge profiles were made for different values on 
discharge current (1 A, 2 A y 4 A), temperature on the 
climatic chamber (4 ºC, 24 ºC y 43 ºC.) and depth of 
discharge (2 V, 2.2 V, 2.5 V y 2.7 V). 

Discharge voltage waveforms have been selected for this 
study (Fig. 2) since charge patterns were similar for all the 
cells. Current waveforms in the discharge were controlled 
(CC phase), and only showed variability according to the 
battery health in the constant voltage zone (CV) (Fig. 3). As 
cells of this study have different DoD, and introducing this 
information to the neural network could make the clusters 
depend on this data (which is not the object of our study), it 
was decided to "cut" all the voltage curves analyzed at 2.7 V, 
the shallower DoD level (Fig. 2).  

 
Fig. 4 Generic SOM architecture scheme.  A 4x4 map is represented. 

SOM also requires constant length vectors; however, 
discharge waveforms have a different duration depending on 
the discharge current and its state of degradation. For this 
reason, it was decided to make discharge curves independent 
of time and capacity by normalizing them according to the 
state of charge (SoC), defined as  

 DISCHARGED

TOTAL

100 100Q (t)SoC(t)
Q

= − ⋅   (1) 

Where QDISCHARGED(t) represents the charge extracted from 
the battery at time t of the cycle, calculated by Coulomb-
Counting [11] and QTOTAL represents QDISCHARGED(t) 
evaluated at the end of the cycle (2.7 V).  

Thus, the SOM does not receive any information about the 
time duration of the discharge or the capacity extracted. This 
normalization has been carried out by linearly interpolating 
the discharge voltage curves to obtain a vector of one hundred 
points corresponding to one hundred percentage points of the 
SoC, as indicated by equation (2) 

 ( ) b a
x a x a
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V VV V Q Q
Q Q

−
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−
  (2) 

Where Vx represents interpolated voltage; Qx is the 
capacity of the point to be interpolated, calculated by 
extracting a hundred equidistant points in the evolution of the 
cell capacity in the cycle; and Va, Vb, Qa, Qb are voltages and 
capacities of the upper and lower points to the point to 
interpolate.  

Finally, incoherent information and incomplete discharge 
patterns have been deleted from the database. Two kinds of 
spurious data have been found, discharge curves not reaching 
the DoD established (experiments stopped at a higher DoD 
than expected) and curves of extremely short duration (due to 
unknown reasons, experiments were stopped too early). This 
type of input data (spurious, outliers) is usually eliminated in 
data analysis techniques. 

B. Self-organizing maps (SOM) 
 The SOM neural model (Self-organizing Maps) [12] (Fig. 
4) has been selected for the analysis. This algorithm is more 
useful for this application than common clustering techniques, 
such as k-means, because the SOM projects the high-
dimensionality input space to a map, which allows visualizing 
the trajectory drawn by a succession of temporal patterns 
associated with the same data source (in this case to the same 
cell). Thus, the SOM enables us to observe the trajectory that 
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a cell draws on the map surface through its voltage patterns, 
showing the degradation process. 

 The SOM is a competitive network, with an input layer 
and an output layer (the map) of unsupervised neurons, used 
for pattern recognition, cluster search and database 
visualization. The SOM has two modes of operation: training 
and inference. Given a map of nx×ny neurons with an input 
layer of n variables xk (1 ≤ k ≤ n), each neuron (i, j) stores a 
vector of synaptic weights wij of n components (Fig. 4). In 
inference, each neuron (i, j) calculates the similarity between 
the input vector xk and its weights wijk. The Euclidean 
distance is commonly used: 
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 The neuron whose weights minimizes the distance with 
the input vector is considered to have recognized the input 
pattern and is called "winner" or “best-matching unit” (BMU). 

 In the training phase the synaptic weights are adjusted. 
Starting with a set of initial (random) weights, in each iteration 
t an input vector x(t) is presented and the search process of 
the BMU is performed as in the inference phase. The weights 
of the BMU and those around it (neighborhood) are updated: 

 ( )( ) ( ) ( ) ( )ijk k ijkw t t x t w tε= ⋅ −   (4) 

 Where ε(t) corresponds to the learning rate, which 
decreases with time: 

 0 0( ) ( )f
f
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t

ε ε ε ε= + −   (5) 

 ε0 represents the initial learning rate (ε0<1.0), εf is the final 
one (εf ≈ 0.01) and tf  is the number of iterations to reach εf. 

In applications with very different input variables with very 
different ranges, the input data should be normalized (for 
instance, between [0,1] or [-1,1]). However, for this 
application it has been decided not to normalize the data 
because all the inputs are of the same type (voltages) with 
similar ranges (between 4.1 V and 2.7 V). 

 This training algorithm generates a non-linear projection 
of the multidimensional input space (database) onto a two-
dimensional map, allowing to visualize the structure of the 
database and the possible clusters presented in it. More 
information about this algorithm can be found in [13]–[15]. In 
this work, the SOM Toolbox developed for MATLAB® by the 
Kohonen research group has been used [16]. 

C. Selection of study groups 
In order to define study groups from the database, with 

variations in controlled cycling conditions, several cell-
groups with similar experimental conditions have been 
selected from the NASA database, with the aim of obtaining 
clearer conclusions. 

The NASA database is organized in groups of three or four 
cells with constant ambient temperature and discharge 
conditions for the group, but a different DoD for each cell. 
The database presents nine groups of cells with different 
parameters, however, after eliminating those groups with 

large amounts of spurious, non-constant discharge currents, 
or groups of cells with more than one varying characteristic,  

TABLE 1 
Studied cells parameters 

Tes
t Cells V min [V] Temp. 

[ºC] 
I disch. 

[A] 
N. disch. 
Cycles 

1 22 units* 2 | 2.2 | 2.5 | 
2.7 

4 | 24 | 43 | 
24/44 1 | 2 | 4 40-170 

2 5 | 6 | 7 2.7 | 2.5 | 2.2 24 2 170 

3 45 | 46 | 47 | 
48 

2 | 2.2 | 2.5 | 
2.7 4 1 72 

4 29 | 30 | 31 | 
32 

2 | 2.2 | 2.5 | 
2.7 43 4 40 

* Test 1: all the cells excluding spurious cells and cells with non-
constant discharge current 

only three groups are considered useful for our study. Each 
cell has between 40 and 170 discharge cycles. Additionally, 
a test is carried out with all the cells to observe the map 
organization according to the characteristics of DoD, ambient 
temperature and discharge current. These four groups are in 
TABLE 1. The original names of the cells have been 
maintained to facilitate the reproducibility of our 
experiments. 

Experiments will be carried out for each group defined, 
introducing to the SOM the discharge voltage curves, 
obtained as detailed in Section II.A. 

After some preliminary simulations, an 18 × 10 SOM is 
considered adequate to clearly see and separate the cell 
clusters. The weight vectors wij have been initialized with 
random values obtained from a fixed seed, in order to perform 
several tests with the same initial conditions. 

In the resulting maps showed in this paper (e.g. Fig. 5), the 
so-called U-matrix visualization has been added (first map in 
every figure), which represents the distance of the vector 
weight of each of the map's neurons with their neighbors. 
Neurons in blue represent similar neurons (with similar 
weights), while yellow neurons represent greater inter-neuron 
distances, suggesting borders between natural clusters. 

III. RESULTS AND DISCUSSION 
The input vector of each training example (each discharge 

cycle) is composed of 100 voltage points corresponding to the 
percentual SoC points. In inference, the SOM projects the 
input vectors onto the map surface (neurons); in (Fig. 5) it is 
represented the U-matrix and three maps with the cell 
projections. These three maps are extracted from the same 
trained SOM but representing onto every neuron the 
projection of every input vector, coloring its ambient 
temperature, depth of discharge and discharge current, 
respectively (Fig. 5).  

Our first test consists of training a SOM with all the cells 
available in the NASA database. In this case, we want to 
validate the SOM ability to differentiate cells with different 
usage characteristics recognized as crucial in the study of 
aging. The resulting clusters (Fig. 5) have clear and polarized 
results for the discharge current and ambient temperature 
maps. For instance, in the case of the current discharge map, a 
gradient is observed from the upper left to the lower right 
(decreasing current).  



 
Fig. 5 SOM trained with all the database cells (Test 1).  The first map is the U-matrix; the other three maps are the same trained SOM but representing the 

projection onto the map of the different cells (input vectors), colored depending on their temperatura, DoD and discharge current, respectively. 

 
Fig. 6 Test 2: Three cells with 170 cycles, Ambient Temperature of 24ºC and Current of 2 A. 

 
Fig. 7 Test 4: Four cells with 40 cycles, Ambient Temperature of 43 ºC and Discharge Current of 4 A. 
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Fig. 8 Examples of analyzed discharge voltage curves. Group A represents cells with normal degradation meanwhile cells with premature degradation have 

curves like Group B.  

In the case of temperature map, clear clusters appear for 4 ºC 
and 43 ºC; however, for the temperature of 24 ºC, two different 
clusters appear. The upper left corresponds to the group for 
the cells discharged at 4 A. In the DoD map, groupings 
coincidences are observed mostly between the cells 
discharged at 2.5 V and 2.7 V in the lower zone, and 2.0 V and 
2.2 V in the upper area of the map. However, these groups 
seem to depend on their currents and temperatures, as can be 
shown on current and temperature maps. A clear border 
appears in the U-matrix in the upper left zone, coinciding with 
the cells discharged at 4 A. Likewise, a subgroup of cells 
discharged at 4 A and 43 ºC is present, located in the left-
middle zone of the map, representing the most aggressive 
discharges with degradation effects. The cells discharged at 
variable temperatures of 24 ºC and 44 ºC between cycles are 
scattered in the temperature zones of 24 ºC. 

Tests 2, 3 and 4 use cells with the same current and 
temperature conditions, but different DoD levels. In the 
voltage map of test 4, clear clusters are differentiated for each 
DoD level. (Fig. 7). However, at test 2, cells with DoD of 2.2 
V and 2.7 V are not clearly discriminated. The results of test 
3 are very similar to test 2, so detailed graphs have not been 
included. 

 The trajectory over the map of each of the cells involved 
in the experiment has been included in these tests, painting the 
winning neurons for each of the voltage patterns introduced. 
The start and endpoints have been labeled to define 
differences between Beginning of Life (BoL) and End of Life 
(EoL) points.  

 Start points (yellow color) of each of the trajectories 
are located in contiguous cells in all the tests, a symptom that 
their behaviors in the first life cycles were very similar. As its 
useful life is consumed, it is observed how the trajectories are 
differentiated on the map (until its final point, in blue) 
depending on the specific use of each cell. 

In Fig. 6 a very clear life trajectory for 2.5 V DoD cell can 
be distinguished, however, the behavior of the cells 
discharged up to 2.2 V and 2.7 V seems very similar until 
approximately 70 % of life useful consumed of both cells 
(using data labels to identify this point). 

In test 4, Fig. 7, with cells discharged at 4 A and 43°C, 
different clusters can be observed for DoD levels, although in 
this case, the trajectory of each of the cells does not provide 
temporal information that can help predict the remaining 
useful life. 

Studying the voltage curves introduced to the SOM for 
each of the experiments, it can be seen that in the latter case, 
trajectories have similar behavior to those shown in Group B 
of Fig. 8. This group, cycled with such extreme temperature 
and current condition (43 ºC and 4 A), defined EoL is reached 
with only forty charge-discharge cycles. In addition, it can be 
observed in Fig. 8, that, for the case represented in Group B, 
behavior changes in voltage curves between cycles are not 
observed. 

These results could appear due to premature cell death 
because of high temperature and current conditions. The rest 
of the studied cells had similar behaviors to Group A in their 
evolutions in the discharge voltage curve. 

IV. CONCLUSIONS AND FUTURE WORK 
In this work, a new technique for determining different 

usage patterns associated with battery aging has been 
proposed. A machine learning algorithm, SOM, has been used 
to find clusters of similar cell patterns and visualize them onto 
a map. Also, the SOM allows seeing the temporal evolution of 
a battery cell, as trajectories onto the map surface.  Tests have 
been carried out to approximate the remaining useful life of 
the studied cells by using the projected trajectories by the 
discharge voltage curves in a battery cycling database. 

This work is an initial study and the results provided are 
qualitative, but after analyzing our results, the ability of the 
SOM to discriminate ambient temperature conditions and 
discharge current in groups of cells with very heterogeneous 
conditions has been verified. The SOM is also capable of 
presenting differentiations between DoD levels for groups of 
cells with similar temperature conditions and discharge 
currents. 

In addition, the trained SOM algorithm is able to 
determine acceptably distinguishable trajectories to estimate 
the remaining useful life under similar cycling conditions, for 
groups of cells with a large number of cycles (greater than one 
hundred discharges) and with some variability in their 
discharge voltage waveforms due to the effect of degradation. 

 It should be noted that, in spite of having a reduced study 
dataset and a limited number of voltage curves for each of the 
samples (22 cells with 40-170 discharge cycles per cell), it has 
been possible to verify the possibility of obtaining 
distinguishable trajectories with degradation information in 
the use for different applications, by using as input SOM 
inputs only the information related to the discharge voltage. 
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 Although these are preliminary results, future applications 
are very promising. With the increase of autonomous power 
applications, the need to determine the real state of health of 
the batteries will be a crucial aspect in the sizing of facilities 
and the health diagnosis for the reuse of batteries. 

 The distinction of cells used in different applications by 
using only their discharge voltage patterns would allow 
classifying batteries depending on the usage they were 
intended to, and not only by using static metrics, such as SoH, 
which does not provide complete information about their 
health state. 

 Likewise, being able to locate the state of life of a cell 
within a specific trajectory, would allow not only to establish 
its past life, but also to estimate its remaining useful life. In 
addition, it should be noted that for the realization of these 
tests is only required to perform a simple cell cycle, which 
does not require complex equipment. 

 Currently, we are looking for a more complete database 
with more cells and more conditions, which allows to confirm 
the results found in this work and to deepen the new proposed 
method. 
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