65 research outputs found
Electrospun amplified fiber optics
A lot of research is focused on all-optical signal processing, aiming to
obtain effective alternatives to existing data transmission platforms.
Amplification of light in fiber optics, such as in Erbium-doped fiber
amplifiers, is especially important for an efficient signal transmission.
However, the complex fabrication methods, involving high-temperature processes
performed in highly pure environment, slow down the fabrication and make
amplified components expensive with respect to an ideal, high-throughput and
room temperature production. Here, we report on near infrared polymer fiber
amplifiers, working over a band of about 20 nm. The fibers are cheap, spun with
a process entirely carried out at room temperature, and show amplified
spontaneous emission with good gain coefficients as well as low optical losses
(a few cm^-1). The amplification process is favoured by the high fiber quality
and low self-absorption. The found performance metrics promise to be suitable
for short-distance operation, and the large variety of commercially-available
doping dyes might allow for effective multi-wavelength operation by electrospun
amplified fiber optics.Comment: 27 pages, 8 figure
Analysis of Forces Involved in the Perching Maneuver of Flapping-Wing Aerial Systems and Development of an Ultra-Lightweight Perching System
Trying to optimize the design of aerial robotics
systems, this work presents an optimized low-weight landing
system for flapping-wing aerial robots. The design, based on the
use of low-sized neodymium magnets, intends to provide that
these aerial robots have the capability of landing in restricted
areas by using the presented solution. This capacity will increase
the application range of these robots. A study of this situation
has been done to analyze the perching maneuver forces and
evaluate the system. The solution presented is low-weight, lowsized, and also relatively inexpensive. Therefore, this solution
may apply to most ornithopter robots. Design, analysis of
the implied forces, development and experimental validation
of the idea are presented in this work, demonstrating that
the developed solution can overcome the ornithopter’s payload
limitation providing an efficient and reliable solutionUnión Europea SI-1867/23/2018 ERC-AD
γ-Aminobutyric Acid Transporter 2 Mediates the Hepatic Uptake of Guanidinoacetate, the Creatine Biosynthetic Precursor, in Rats
Guanidinoacetic acid (GAA) is the biosynthetic precursor of creatine which is involved in storage and transmission of phosphate-bound energy. Hepatocytes readily convert GAA to creatine, raising the possibility that the active uptake of GAA by hepatocytes is a regulatory factor. The purpose of this study is to investigate and identify the transporter responsible for GAA uptake by hepatocytes. The characteristics of [14C]GAA uptake by hepatocytes were elucidated using the in vivo liver uptake method, freshly isolated rat hepatocytes, an expression system of Xenopus laevis oocytes, gene knockdown, and an immunohistochemical technique. In vivo injection of [14C]GAA into the rat femoral vein and portal vein results in the rapid uptake of [14C]GAA by the liver. The uptake was markedly inhibited by γ-aminobutyric acid (GABA) and nipecotinic acid, an inhibitor of GABA transporters (GATs). The characteristics of Na+- and Cl−-dependent [14C]GAA uptake by freshly isolated rat hepatocytes were consistent with those of GAT2. The Km value of the GAA uptake (134 µM) was close to that of GAT2-mediated GAA transport (78.9 µM). GABA caused a marked inhibition with an IC50 value of 8.81 µM. The [14C]GAA uptake exhibited a significant reduction corresponding to the reduction in GAT2 protein expression. GAT2 was localized on the sinusoidal membrane of the hepatocytes predominantly in the periportal region. This distribution pattern was consistent with that of the creatine biosynthetic enzyme, S-adenosylmethionine∶guanidinoacetate N-methyltransferase. GAT2 makes a major contribution to the sinusoidal GAA uptake by periportal hepatocytes, thus regulating creatine biosynthesis in the liver
Novel genes and sex differences in COVID-19 severity
[EN] Here, we describe the results of a genome-wide study conducted in 11 939 coronavirus disease 2019 (COVID-19) positive cases with an extensive clinical information that were recruited from 34 hospitals across Spain (SCOURGE consortium). In sex-disaggregated genome-wide association studies for COVID-19 hospitalization, genome-wide significance (P < 5 × 10−8) was crossed for variants in 3p21.31 and 21q22.11 loci only among males (P = 1.3 × 10−22 and P = 8.1 × 10−12, respectively), and for variants in 9q21.32 near TLE1 only among females (P = 4.4 × 10−8). In a second phase, results were combined with an independent Spanish cohort (1598 COVID-19 cases and 1068 population controls), revealing in the overall analysis two novel risk loci in 9p13.3 and 19q13.12, with fine-mapping prioritized variants functionally associated with AQP3 (P = 2.7 × 10−8) and ARHGAP33 (P = 1.3 × 10−8), respectively. The meta-analysis of both phases with four European studies stratified by sex from the Host Genetics Initiative (HGI) confirmed the association of the 3p21.31 and 21q22.11 loci predominantly in males and replicated a recently reported variant in 11p13 (ELF5, P = 4.1 × 10−8). Six of the COVID-19 HGI discovered loci were replicated and an HGI-based genetic risk score predicted the severity strata in SCOURGE. We also found more SNP-heritability and larger heritability differences by age (<60 or ≥60 years) among males than among females. Parallel genome-wide screening of inbreeding depression in SCOURGE also showed an effect of homozygosity in COVID-19 hospitalization and severity and this effect was stronger among older males. In summary, new candidate genes for COVID-19 severity and evidence supporting genetic disparities among sexes are provided.S
Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2
The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality
XXVI Congreso Nacional y II Congreso Internacional de SEDEM
Organizan: Sociedad Española de Educación Médica y Facultad de Medicina y Enfermería, Universidad del País Vasco (UPV/EHU)Comunicaciones aceptadas en el XXVI Congreso de la Sociedad Española de Educación Médica, celebrado en Bilbao del 28 al 30 de noviembre de 2024
Substituted phenylhydrazono derivatives of curcumin as new ligands, a theoretical study
A family of phenylhydrazono curcumin ligands was studied to see the influence of the substituents over the composition of the molecular orbitals, electronic transitions and reactivity by means of DFT and TDDFT calculations. The substituents varied between electron-donor groups (EDG) to electron-withdrawing groups (EWG). The geometrical parameters remain almost unchanged when the character of the substituent was changed. On the other hand the HOMO, LUMO and HOMO-LUMO gap (HLG) energies changed dramatically. TDDFT calculations were performed in order to propose the main absorption bands of this family of compounds. All the obtained showed a good correlation with a Hammett correlation. © 2014 Elsevier B.V. All rights reserved.Universidad Autónoma de Chil
Electrochemical and theoretical characterization of the electro-oxidation of dimethoxycurcumin
Dimethoxycurcumin (DMC) ((1E,6E)-1-(3,4-dimethoxycyclohexyl)-7-(3,4-dimethoxyphenyl) hepta-1,6- diene-3,5-dione) is a natural polyphenolic compound that appears together with curcumin in turmeric. Both molecules have wide range biological activities as antioxidant, anti-inflammatory and anti-carcinogenic agent. To evaluate the oxidation process and kinetics for DMC, the rate constant, electron transfer and diffusion coefficients for the electrochemical oxidation were determined. Therefore, its electrochemical behavior over a platinum electrode in anhydrous media was investigated. Furthermore, DFT calculations were performed to give a rational explanation to the obtained results. All the results support the fact that the central [sbnd]CH2[sbnd] group is the most reactive against an oxidation process. © 2017Universidad Autónoma de Chil
- …
