69 research outputs found

    Genetic heterogeneity and actionable mutations in HER2-positive primary breast cancers and their brain metastases

    Get PDF
    Brain metastases constitute a challenge in the management of patients with HER2- positive breast cancer treated with anti-HER2 systemic therapies. Here we sought to define the repertoire of mutations private to or enriched for in HER2-positive brain metastases. Massively parallel sequencing targeting all exons of 254 genes frequently mutated in breast cancers and/or related to DNA repair was used to characterize the spatial and temporal heterogeneity of HER2-positive breast cancers and their brain metastases in six patients. Data were analyzed with state-of-the-art bioinformatics algorithms and selected mutations were validated with orthogonal methods. Spatial and temporal inter-lesion genetic heterogeneity was observed in the HER2-positive brain metastases from an index patient subjected to a rapid autopsy. Genetic alterations restricted to the brain metastases included mutations in cancer genes FGFR2, PIK3CA and ATR, homozygous deletion in CDKN2A and amplification in KRAS. Shifts in clonal composition and the acquisition of additional mutations in the progression from primary HER2-positive breast cancer to brain metastases following anti-HER2 therapy were investigated in additional five patients. Likely pathogenic mutations private to or enriched in the brain lesions affected cancer and clinically actionable genes, including ATR, BRAF, FGFR2, MAP2K4, PIK3CA, RAF1 and TP53. Changes in clonal composition and the acquisition of additional mutations in brain metastases may affect potentially actionable genes in HER2-positive breast cancers. Our observations have potential clinical implications, given that treatment decisions for patients with brain metastatic disease are still mainly based on biomarkers assessed in the primary tumor

    Sugarcane (Saccharum X officinarum): A Reference Study for the Regulation of Genetically Modified Cultivars in Brazil

    Get PDF
    Global interest in sugarcane has increased significantly in recent years due to its economic impact on sustainable energy production. Sugarcane breeding and better agronomic practices have contributed to a huge increase in sugarcane yield in the last 30 years. Additional increases in sugarcane yield are expected to result from the use of biotechnology tools in the near future. Genetically modified (GM) sugarcane that incorporates genes to increase resistance to biotic and abiotic stresses could play a major role in achieving this goal. However, to bring GM sugarcane to the market, it is necessary to follow a regulatory process that will evaluate the environmental and health impacts of this crop. The regulatory review process is usually accomplished through a comparison of the biology and composition of the GM cultivar and a non-GM counterpart. This review intends to provide information on non-GM sugarcane biology, genetics, breeding, agronomic management, processing, products and byproducts, as well as the current technologies used to develop GM sugarcane, with the aim of assisting regulators in the decision-making process regarding the commercial release of GM sugarcane cultivars
    • 

    corecore